-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathplay_game.py
112 lines (89 loc) · 4.51 KB
/
play_game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import sys
from multiprocessing import Value
import cv2
import numpy as np
import pyautogui
import tensorflow as tf
cap = cv2.VideoCapture(0)
sys.path.append("..")
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
# # Model preparation
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = 'snake/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('images/data', 'object-detection.pbtxt')
NUM_CLASSES = 4
# ## Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# ## Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
with detection_graph.as_default():
# from directkeys import PressKey, ReleaseKey, W
# enter your monitor's resolution or use a library to fetch this - I had to hard code due to issues with
# dual monitor setup
x, y = 288, 512
# init process safe variables for workers
objectX, objectY = Value('d', 0.0), Value('d', 0.0)
objectX_previous = None
objectY_previous = None
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
while True:
ret, image_np = cap.read()
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
cv2.imshow('controls detection', image_np)
if cv2.waitKey(50) & amp; 0xFF == ord('q'):
cv2.destroyAllWindows()
break
'''MOVE'''
# press 'w' if bounding box of finger detected
objects = np.where(classes[0] == 1)[0]
# calculate center of box if detection exceeds threshold
if len(objects) > 0 and scores[0][objects][0] > 0.15:
pyautogui.press('up')
objects = np.where(classes[0] == 2)[0]
# calculate center of box if detection exceeds threshold
if len(objects) > 0 and scores[0][objects][0] > 0.15:
pyautogui.press('down')
objects = np.where(classes[0] == 3)[0]
# calculate center of box if detection exceeds threshold
if len(objects) > 0 and scores[0][objects][0] > 0.15:
pyautogui.press('left')
objects = np.where(classes[0] == 4)[0]
# calculate center of box if detection exceeds threshold
if len(objects) > 0 and scores[0][objects][0] > 0.15:
pyautogui.press('right')
cap.release()