-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathteoricas.ml
1257 lines (977 loc) · 22.4 KB
/
teoricas.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
let rec fib n =
if n <= 1 then n
else fib (n-1) + fib (n-2)
;;
let per_area r =
let pi = 2. *. asin 1. in
(2. *. pi *. r, pi *. r *. r)
;;
let per_area =
let pi = 2. *. asin 1. in
function r -> (2. *. pi *. r)
;;
(* dados dos enteros devuelve el conciente *)
let rec quo x y = (* x >= 0, y > 0 *)
if x < y then 0
else 1 + quo (x-y) y
;;
(* dados dos enteros devuelve el resto *)
let rec rem x y =
if x < y then x
else rem (x-y) y
;;
(*
let rec div x y =
if x < y then (0, x)
else
let p = div (x-y) y in
(1+fst)
*)
let rec div x y =
if x < y then (0, x)
else
let (q, r) = div (x-y) y in
(1 + q, r)
;;
(* FALTAN ALGUNAS COSAS DE LA CLASE DEL 07/10 *)
let rec fib n = (* n >= 1 *)
if n <= 2 then 1
else fib (n-1) + fib (n-2);;
let crono f x =
let t = Sys.time () in
let _ = f x in
Sys.time () -. t;;
(* CLASE DEL 14/10 *)
(* Operaciones con Listas https://ocaml.org/manual/5.2/api/List.html *)
let l = ['a';'e';'i';'o';'u'];;
List.hd l;; (* Devuelve 'a' *)
List.tl l;; (* Devuelve ['e'; 'i'; 'o'; 'u'] *)
List.rev l;; (* Devuelve ['u'; 'o'; 'i'; 'e'; 'a'] *)
let rec lenght l =
if l = [] then 0
else 1 + List.length (List.tl l)
(* Con cada ejecución se acumula un 1 + (llamada recursiva) *)
(* Con un array lo suficientemente larga podría agotarse el stack *)
;;
(* TRANQUILIDAD :/ *)
List.map abs [1;-2;3];; (* Se aplica la función en cada elemento de la lista *) (* [1; 2; 3] *)
(* Sumarle a cada elemento 1 *)
let suma x y = x + y;;
let suma' (x,y) = x + y;;
List.map (suma 1) [1;2;3];;
List.map (function n -> suma' (1,n)) [1;2;3];;
(* Multiplicar cada elemento por 2 *)
List.map (( * ) 2) [1;2;3];;
(* Que elemento lo cumplen *)
List.filter ((<) 0) [1;-2;3];; (* [1;3] *)
List.exists ((<) 0) [1;2;3];; (* True *)
List.exists ((<) 0) [-1;2;3];; (* False *)
List.for_all ((<) 0) [1;2;3];; (* True *)
(* El primero que encuentra lo devuelve *)
List.find ((<) 0) [-1;2;3];; (* 2 *)
(* List.find ((<) 0) [-1;-2;-3];; (* Exception: Not_found *) *)
(* ¿Es miembro? *)
List.mem 2 [1;2;3];; (* True *)
(* Longitud *)
List.length [1;2;3;4];; (* 4 *)
(* Creación de listas *)
List.init 10 abs;; (* [0; 1; 2; 3; 4; 5; 6; 7; 8; 9] *)
let l2 = List.init 50_000_000 abs;;
List.hd (List.rev l2);; (* 49999999 *)
List.length l2;; (* 50000000 *)
lenght l2;; (* Stack Overflow *)
List.init 26 (function n -> char_of_int (65+n));; (* El abecedario completo *)
(* CLASES DEL 15/10 *)
let rec last l =
if List.tl l = [] then List.hd l
else last (List.tl l)
;;
let rec last l =
if List.length l = 1 then List.hd l
else last (List.tl l)
;;
(*
<e1> : t
<e2> : t list
-------------------
<e1>::<e2> : t list
*)
(* Constructor de listas *)
3 :: 7 :: 9 :: [];; (* [3; 7; 9] *)
let hd = function
[] -> 2/0
| h::_ -> h
;;
let hd = function h::t -> h;;
let hd = function h::_ -> h;;
let hd (h::_) = h;;
let hd = function
[] -> raise (Failure "hd")
| h::_ -> h
;;
(* CREAR UNA VERSIÓN TERMINAL DE LA SIGUIENTE FUNCIÓN *)
let rec lenght = function
[] -> 0
| _::t -> 1 + lenght t
;;
(* Existe el elemento x en la lista l *)
(* mem x l;; *)
let rec mem x = function
[] -> false
| h::t -> x = h || mem x t
(* Esto es lo mismo que escribir lo siguente *)
(* | l -> x = List.hd l || mem x (List.tl l) *)
;;
(* mem 3 [1;2;3] 1::2::3::[] *)
(* mem 3 [2;3] 2::3::[] *)
(* mem 3 [3] 3::[] *) (* x = h TRUE*)
(* mem 3 [4;5;6] 4::5::6::[] *)
(* mem 3 [5;6] 5::6::[] *)
(* mem 3 [6] 6::[] *)
(* mem 3 [1;2;3] 1::2::3::[] *)
(* mem 3 [2;3] 2::3::[] *)
(* mem 3 [] [] *) (* [] -> FALSE *)
(* REIMPLEMENTAMOS List.find *)
let rec find p = function
[] -> raise Not_found
| h::t -> if p h then h else find p t
;;
(* REIMPLEMENTAMOS List.filter *)
let rec filter p = function
[] -> []
| h::t ->
if p h then h :: filter p t
else filter p t
;;
(* Clase del 21/10 *)
(* Reimplementación de lenght *)
let rec aux = function
(n,[]) -> n
| (n, _::t) -> aux(n+1,t)
;;
let lenght l =
aux (0,l)
;;
let lenght l =
let rec aux = function
(n,[]) -> n
| (n, _::t) -> aux(n+1,t)
in
aux (0,l)
;;
let rec append = function
[] -> (function l -> l)
| h::t -> (function l -> h :: append t l)
;;
let rec append l1 l2 =
match l1 with
[] -> l2
| h::t -> h :: append t l2
;;
(* CLASE 22/10 *)
let compare_lengs l1 l2 =
compare (List.length l1) (List.length l2)
;;
let rec compare_lengs = function
[] -> (function [] -> 0
| _ -> -1)
| _::t1 -> (function [] -> 1
| _::t2 -> compare_lengs t1 t2)
;;
let rec compare_lengs l1 l2 =
match (l1, l2) with
([], []) -> 0
| ([], _) -> -1
| (_, []) -> 1
| (_::t1, _::t2) -> compare_lengs t1 t2
;;
let rec fact = function
0 -> 1
| n -> n * fact (n-1)
;;
(* Versión terminal del factorial *)
(* El acumulador n va guardando los valores de las multiplicaciones *)
(*
aux 0 1
aux 1 1
aux 2 2
aux 3 6
aux 4 24
aux 5 120
120
*)
let fact n =
let rec aux acc = function
0 -> acc
| i -> aux (i*acc) (i-1)
in
aux 1 n
;;
(* El único defecto de la función anterior es que en cada repetición se redefine aux *)
(* Si el compilador no es lo suficientemente inteligente *)
(*Esta función es parcialmente incorrecta *)
let fact n =
let rec aux i fi =
if i = n then fi
else aux (i+1) ((i+1)*fi)
in
aux 0 1
;;
List.fold_left (+) 0 [1;2;3;4;5] (* 15 *)
let lenght l =
List.fold_left (function a -> function _ -> a+1) 0 l
;;
(*
let rec fold_left a = function
[] -> a
| h::t -> fold_left f (f a h) t
;;
*)
let rev l =
List.fold_left (function a -> function x -> x::a) [] l
;;
(* Dado una lista devolver el máximo *)
(* lmax / también existe la función max en ocaml *)
(* soltar error cuando se envie una lista vacía *)
(* CLASES 28/10 *)
let rec lmax = function
h::[] -> h
| h::t ->
if h >= lmax t then h else lmax t
;;
let rec lmax = function
h::[] -> h
| h::t -> max h (lmax t)
;;
let lmax (h::t) =
let rec aux m = function
[] -> m
| h::t -> aux (max h m) t
in
aux h t
;;
let rec lmax = function
h::[] -> h
| h1::h2::t -> lmax (max h1 h2::t)
;;
let rec append l1 l2 =
match l1 with
[] -> l2
| h::t -> h :: append t l2
;;
let rec rev_append l1 l2 =
match l1 with
[] -> l2
| h::t -> rev_append t (h::l2)
;;
let append' l1 l2 =
List.rev_append (List.rev l1) l2
;;
let rev l =
List.rev_append l []
;;
let rev l =
List.fold_left
(function a -> function x -> x::a) [] l
;;
(* ESTA ES LA UTILIDAD DE FUN *)
let rev l =
List.fold_left
(fun a x -> x::a) [] l
;;
(* MUY MALA IMPLEMENTACIÓN DE REV LIST*)
let rec rev = function
[] -> []
| h::t -> (rev t) @ [h]
;;
(*
rev [1;2;3;4]
(rev [2;3;4]) @ [1]
(rev [3;4] @ [2]) @ [1]
((rev [4] @ [3]) @ [2]) @ [1]
(((rev [] @ [4]) @ [3]) @ [2]) @ [1]
((([] @ [4]) @ [3]) @ [2]) @ [1]
(([4] @ [3]) @ [2]) @ [1]
([4;3] @ [2]) @ [1]
[4;3;2] @ [1]
[4;3;2;1]
*)
let rec for_all p = function
[] -> true
| h::t -> p h && for_all p t
;;
let for_all p l =
List.fold_left (fun a x -> p x && a) true l
;;
(* CLASES 29/10 *)
let rec sorted = function
h1::h2::t -> h1 <= h2 && sorted (h2::t)
| _ -> true
;;
(*if h1 <= h2 then sorted (h2::t) else then*)
let rec insert x = function
[] -> [x]
| h::t ->
if x <= h then x::h::t
else h :: insert x t
;;
(* Versión terminal *)
let insert' x l =
let rec aux (before, after) =
match after with
[] -> List.rev (x::before)
| h::t ->
if x <= h then List.rev_append before (x::after)
else aux (h::before, t)
in
aux ([], l)
;;
let rec i_sort = function
[]-> []
| h::t -> insert' h (i_sort t)
;;
(* Versión terminal *)
let i_sort' l =
let rec aux sorted = function
[] -> sorted
| h::t -> aux (insert' h sorted) t
in
aux [] l
;;
let l1 = List.init 10_000 (function _ -> Random.int 1_000_000);;
let l2 = List.init 300_000 (function _ -> Random.int 1_000_000);;
let l3 = List.init 10_000_000 (function _ -> Random.int 1_000_000);;
(* Función de medir tiempos *)
let crono f x =
let t = Sys.time () in
let _ = f x in
Sys.time () -. t
;;
(* CLASES 04/11 *)
(* Dado una función de ordenación "ord" y una lista *)
let rec sorted ord = function
h1::h2::t -> ord h1 h2 && sorted ord (h2::t)
| _ -> true
;;
(* sorted (>=) [9;9;8;6;0];; - : bool = true;; *)
let rec sorted_g ord = function
h1::h2::t -> ord h1 h2 && sorted_g ord (h2::t)
| _ -> true
;;
let rec insert x = function
[] -> [x]
| h::t -> if x <= h then x::h::t
else h :: insert x t
;;
let rec insert_g ord x = function
[] -> [x]
| h::t ->
if ord x h then x::h::t
else h :: insert_g ord x t
;;
let rec isort = function
[] -> []
| h::t -> insert h (isort t)
;;
let rec isort_g ord = function
[] -> []
| h::t -> insert_g ord h (isort_g ord t)
;;
(*
# isort_g (<=) [22; 3; 14; 0; -2; 8; 0; 7; 3; 5];;
- : int list = [-2; 0; 0; 3; 3; 5; 7; 8; 14; 22]
# isort_g (>=) [22; 3; 14; 0; -2; 8; 0; 7; 3; 5];;
- : int list = [22; 14; 8; 7; 5; 3; 3; 0; 0; -2]
# isort_g (=) [22; 3; 14; 0; -2; 8; 0; 7; 3; 5];;
- : int list = [5; 3; 3; 7; 0; 0; 8; -2; 14; 22]
*)
let l = [("Luis", 8.9); ("Juana", 9.2); ("Rosa", 10.0); ("Ana", 7.5)];;
(* isort_g (ord) l;; *)
(<=);; (* Compara los primeros elementos y en caso de empate el segundo *)
(* En este caso comparación de strings es orden alphavético *)
fun (_, n1) (_,n2) -> n1 <= n2;; (* Ordenar por notas *)
fun (s1, _) (s2, _) -> String.length s1 <= String.length s2;; (* Ordenar por tamaño de los strings *)
let rec fusion l1 l2 =
match l1, l2 with
[], l | l, [] -> l
| h1::t1, h2::t2 ->
if h1 <= h2
then h1 :: fusion t1 l2 (* h2::t2 == l2 *)
else h2 :: fusion l1 t2
;;
(*
let rec fusion_g ord l1 l2 =
match l1, l2 with
[], l | l, [] -> l
| h1::t1, h2::t2 ->
if ord h1 h2
then h1 :: fusion_g ord t1 l2 (* h2::t2 == l2 *)
else h2 :: fusion_g ord l1 t2
;;
*)
let rec divide = function
h1::h2::t ->
let t1, t2 = divide t in
h1::t1, h2::t2
| l -> l, []
;;
let rec merge_sort l =
match l with
[] | [_] -> l
| _ ->
let l1, l2 = divide l in
fusion (merge_sort l1) (merge_sort l2)
;;
let rlist n =
List.init n (function _ -> Random.int 1_000_000)
;;
let crono f x =
let t = Sys.time () in
let _ = f x in
Sys.time () -. t
;;
(* CLASES 05/11 *)
let rec divide = function
h1::h2::t ->
let l1, l2 = divide t in
h1::l1, h2::l2
| l -> l, []
;;
let divide' l =
let rec aux acc1 acc2 = function
[] -> acc1, acc2 (* Una vez repartidos todos los elem. de una lista par que la lista vacía *)
| h::[] -> h::acc1, acc2 (*h::[] == [h]*) (* De ser una lista impar sobraría uno*)
| h1::h2::t ->
aux (h1::acc1) (h2::acc2) t (* Añadir a los acumuladores los dos primeros elementos de la lista *)
in
aux [] [] l
;;
let rec fusion l1 l2 =
match l1, l2 with
[], l | l, [] -> l
| h1::t1, h2::t2 ->
if h1 <= h2
then h1 :: fusion t1 l2
else h2 :: fusion l1 t2
;;
let fusion' l1 l2 =
let rec aux acc = function
h1::t1, h2::t2 ->
if h1 <= h2
then aux (h1::acc) (t1, h2::t2)
else aux (h2::acc) (h1::t1, t2)
in
aux [] (l1, l2)
;;
(*
fusion' 134 25689
aux [] 134 25689
aux 1 34 25689
aux 21 34 5589
aux 321 4 5689
aux 4321 [] 5689
*)
(* REALIZAR QUICK SORT DE MANERA TERMINAL NO ES RENTABLE *)
(* CLASES 11/11 *)
(*
'a option
None;;
Some 'a
*)
let (//) m n =
if n <> 0
then Some (m / n)
else None
;;
let come (i1, j1) (i2, j2) =
i1 = i2 || (* misma fila *)
j1 = j2 || (* misma columna *)
abs (i1-i2) = abs (j1-j2) (* misma diagonal *)
;;
let rec compatible c = function
[] -> true
| h::t -> not (come c h) && compatible c t
;;
let reinas n =
let rec completa camino (i, j) =
if i > n then Some camino (* Salí fuera del tablero filas, es decir terminé *)
else if j > n then None (* Salí fuera del tablero columnas, estado de bloqueo *)
else if compatible (i,j) camino (* ¿ Es la posición encontrada válida ? *)
(* Si, devuelvo las demás )
( reinas y la nueva, avanzamos )
( a la siguiente fila *)
then
match completa ((i,j)::camino) (i+1, 1) with
None -> completa camino (i, j+1)
| solucion -> solucion
(*| Some sol -> Some sol *)
(* No, y continuamos a la )
( siguiente columna *)
else completa camino (i, j+1)
in
completa [] (1,1)
;;
(*
type exn =
Invalid_argument of string
| Failure of string
| Not_found
| Division_by_zero
| ...
| Reinas
exception Reinas;;
raise : exn -> a'
*)
let tl' = function
[] -> []
| _::t -> t
;;
let tl' l =
try List.tl l with
Failure _ -> []
;;
let reinas n =
let rec completa camino (i, j) =
if i > n then camino
else if j > n then raise Not_found (* None *)
else if compatible (i,j) camino
then
(* SUSTITUIMOS ESTE PATTERN MATCHING CON UN TRY WITH
match completa ((i,j)::camino) (i+1, 1) with
None -> completa camino (i, j+1)
| solucion -> solucion
*)
try completa ((i, j) :: camino) (i+1, 1) with
Not_found -> completa camino (i, j+1)
else completa camino (i, j+1)
in
completa [] (1,1)
;;
(* En vez de SOME O NONE o un Not_found usamos la lista vacía *)
let reinas n =
let rec completa camino (i, j) =
if i > n then [camino]
else if j > n then []
else if compatible (i,j) camino
then
match completa ((i, j) :: camino) (i+1, 1) with
[] -> completa camino (i, j+1)
| sol -> sol
else completa camino (i, j+1)
in
completa [] (1,1)
;;
(* TIENE MAYOR COHERENCIA INTERNA YA QUE
# reinas 0;; - : (int * int) list list = [[]] (* SOLUCIÓN: NO HACER NADA*)
# reinas 1;; - : (int * int) list list = [[(1, 1)]] (* SOLUCIÓN: LA TRIVIAL *)
# reinas 2;; - : (int * int) list list = [] (* NO TIENE SOLUCIÓN *)
# reinas 3;; - : (int * int) list list = [] (* NO TIENE SOLUCIÓN *)
# reinas 4;; - : (int * int) list list = [[(4, 3); (3, 1); (2, 4); (1, 2)]] (* SOLUCIÓN *)
*)
let all_reinas n =
let rec completa camino (i, j) =
if i > n then [camino]
else if j > n then []
else if compatible (i,j) camino
then
completa ((i, j) :: camino) (i+1, 1) @ completa camino (i,j+1)
else completa camino (i, j+1)
in
completa [] (1,1)
;;
(* Contador de soluciones
all_reinas 4;;
- : (int * int) list list =
[[(4, 3); (3, 1); (2, 4); (1, 2)]; [(4, 2); (3, 4); (2, 1); (1, 3)]]
all_reinas 5;;
all_reinas 6;;
List.length (all_reinas 8);; - : int = 92
List.length (all_reinas 10);;
List.lenght (all reinas 13);;
*)
let all_reinas n =
let rec completa camino (i, j) =
if i > n then 1
else if j > n then 0
else if compatible (i,j) camino
then
completa ((i, j) :: camino) (i+1, 1) + completa camino (i,j+1)
else completa camino (i, j+1)
in
completa [] (1,1)
;;
(* CLASES 18/11 *)
(* ÁRBOLES *)
type maybe_an_int =
Some of int
| None
;;
let (//) x y =
match x, y with
Some _, Some 0 -> None
| Some a, Some b -> Some (a/b)
| _ -> None
;;
(*Definir un tipo booleano*)
type booleano = V | F;;
(*Se utiliza con pattern matching*)
let (&&&) b1 b2 =
match b1, b2 with
V, V -> V
| _ -> F
;;
let (|||) b1 b2 =
match b1, b2 with
V, _ | _, V -> V
| _ -> F
;;
type palo =
Pica
| Trebol
| Corazon
| Diamante
;;
type numero =
I of int
| F of float
;;
let rec (++) n1 n2 =
match n1, n2 with
I x, I y -> I (x + y)
| F x, F y -> F (x +. y)
| I x, F y -> F (float x +. y)
| _ -> n2 ++ n1
;;
type maybe_an_int =
Some of int
| None
;;
(* PREGUNTAR POR ESTE ERROR *)
type maybe_a_string =
Somes of string
| Nones
;;
type 'a option =
Some of 'a
| None
;;
type nat =
Zero
| Succ of nat (* Succ: sucesor *)
;;
(* CLASES 19/11 *)
type nat =
Zero
| Succ of nat
;;
let rec sum n1 = function
Zero -> n1
| Succ n2 -> sum (Succ n1) n2
;;
let rec nat_of_int = function
0 -> Zero
| n ->
if n < 0 then raise (Invalid_argument "nat_of_int")
else Succ (nat_of_int (n-1))
;;
(* Versión con una sola comprobación y no en cada iteración *)
(* VERSIÓN PROFESOR
let rec nat_of_int n =
0 -> Zero
| n -> Succ (nat_of_int (n-1))
;;
let nat_of_int n =
if n < 0 then raise (Invalid_argument "nat_of_int")
else nat_of_int n
;;
*)
(*
let nat_of_int n =
(* FUNCIÓN AUX *)
let rec nat_of_int n = function
0 -> Zero
| n -> Succ (nat_of_int (n-1))
in
if n < 0 then raise (Invalid_argument "nat_of_int")
else nat_of_int n (* LLAMADA A AUX *)
;;
*)
type 'a tree =
Empty
| Node of ('a * 'a tree * 'a tree)
;;
let rec num_nodes = function
Empty -> 0
| Node (_, l, r) -> 1 + num_nodes l + num_nodes r
;;
let rec altura = function
Empty -> 0
| Node (_, l, r) -> 1 + max (altura l) (altura r)
;;
let rec preorden = function
Empty -> []
| Node (n, l, r) -> (n :: preorden l) @ (preorden r)
;;
let rec hojas = function
Empty -> []
| Node (n, Empty, Empty) -> [n]
| Node (_, l, r) -> (hojas l) @ (hojas r)
;;
(* CLASES 25/11 *)
(*
2
7 5
Node of (2) (7) (5)
Node of 'a * 'a tree * 'a tree
*)
(* Tipo de árbol de la clase pasada *)
type 'a tree =
Empty
| Node of 'a * 'a tree * 'a tree
;;
(* Tipo de árbol ESTRICTAMENTE binario, no puede haber un árbol con solo una hoja *)
type 'a btree =
Leaf of 'a
| Node of 'a * 'a btree * 'a btree
;;
let rec mirror = function
Leaf x -> Leaf x
| Node (x, l, r) -> Node (x, mirror r, mirror l)
;;
type 'a gtree =
GT of 'a * 'a gtree list
;;
let rec num_nodes = function
GT (_, []) -> 1
| GT (_, l) ->
List.fold_left (+) 1 (List.map num_nodes l)
(* Suma todos los elementos de la lista, mas el nodo padre *)
;;
(* Suma todos los elementos de la lista, mas el nodo padre *)
let rec num_nodes (GT (_, l)) = List.fold_left (+) 1 (List.map num_nodes l);;
let rec num_nodes' = function
GT (_, []) -> 1
| GT (x, h::t) -> num_nodes' h + num_nodes' (GT (x, t))
;;
(* PARADIGMA FUNCIONAL TERMINA AQUÍ *)
(* PARADIGMA IMPERATIVO *)
ref;;
(* - : 'a -> 'a ref = <fun> *)
ref 8;;
(* - : int ref = {contents = 8} *)
let i = ref 0;;
(* val i : int ref = {contents = 0} *)
(* i + 3;; *)
(*
Line 1, characters 0-1:
1 | i + 3;;
^
Error: This expression has type "int ref"
but an expression was expected of type "int"
*)
(!);;
(* - : 'a ref -> 'a = <fun> *)
!i;;
(* - : int = 0 *)
!i + 3;;
(* - : int = 3 *)
(:=);;