-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRandomClassifierTest.cpp
86 lines (84 loc) · 4.02 KB
/
RandomClassifierTest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
//
// Created by Olcay Taner YILDIZ on 10.01.2021.
//
#include "catch.hpp"
#include "../src/DataSet/DataSet.h"
#include "../src/Model/RandomModel.h"
TEST_CASE("RandomClassifierTest-testTrain") {
DataSet iris, car, chess, bupa, tictactoe, dermatology, nursery;
vector<AttributeType> attributeTypes;
for (int i = 0; i < 4; i++) {
attributeTypes.emplace_back(AttributeType::CONTINUOUS);
}
DataDefinition dataDefinition = DataDefinition(attributeTypes);
iris = DataSet(dataDefinition, ",", "datasets/iris.data");
attributeTypes.clear();
for (int i = 0; i < 6; i++) {
attributeTypes.emplace_back(AttributeType::CONTINUOUS);
}
dataDefinition = DataDefinition(attributeTypes);
bupa = DataSet(dataDefinition, ",", "datasets/bupa.data");
attributeTypes.clear();
for (int i = 0; i < 34; i++) {
attributeTypes.emplace_back(AttributeType::CONTINUOUS);
}
dataDefinition = DataDefinition(attributeTypes);
dermatology = DataSet(dataDefinition, ",", "datasets/dermatology.data");
attributeTypes.clear();
for (int i = 0; i < 6; i++) {
attributeTypes.emplace_back(AttributeType::DISCRETE);
}
dataDefinition = DataDefinition(attributeTypes);
car = DataSet(dataDefinition, ",", "datasets/car.data");
attributeTypes.clear();
for (int i = 0; i < 9; i++) {
attributeTypes.emplace_back(AttributeType::DISCRETE);
}
dataDefinition = DataDefinition(attributeTypes);
tictactoe = DataSet(dataDefinition, ",", "datasets/tictactoe.data");
attributeTypes.clear();
for (int i = 0; i < 8; i++) {
attributeTypes.emplace_back(AttributeType::DISCRETE);
}
dataDefinition = DataDefinition(attributeTypes);
nursery = DataSet(dataDefinition, ",", "datasets/nursery.data");
attributeTypes.clear();
for (int i = 0; i < 6; i++) {
if (i % 2 == 0) {
attributeTypes.emplace_back(AttributeType::DISCRETE);
} else {
attributeTypes.emplace_back(AttributeType::CONTINUOUS);
}
}
dataDefinition = DataDefinition(attributeTypes);
chess = DataSet(dataDefinition, ",", "datasets/chess.data");
RandomModel randomClassifier = RandomModel();
InstanceList instanceList = iris.getInstanceList();
Parameter* parameter = new Parameter(1);
randomClassifier.train(instanceList, parameter);
REQUIRE_THAT(69.33, Catch::Matchers::WithinAbs(100 * randomClassifier.test(iris.getInstanceList())->getErrorRate(), 0.01));
randomClassifier = RandomModel();
instanceList = bupa.getInstanceList();
randomClassifier.train(instanceList, parameter);
REQUIRE_THAT(49.27, Catch::Matchers::WithinAbs(100 * randomClassifier.test(bupa.getInstanceList())->getErrorRate(), 0.01));
randomClassifier = RandomModel();
instanceList = dermatology.getInstanceList();
randomClassifier.train(instanceList, parameter);
REQUIRE_THAT(83.61, Catch::Matchers::WithinAbs(100 * randomClassifier.test(dermatology.getInstanceList())->getErrorRate(), 0.01));
randomClassifier = RandomModel();
instanceList = car.getInstanceList();
randomClassifier.train(instanceList, parameter);
REQUIRE_THAT(75.46, Catch::Matchers::WithinAbs(100 * randomClassifier.test(car.getInstanceList())->getErrorRate(), 0.01));
randomClassifier = RandomModel();
instanceList = tictactoe.getInstanceList();
randomClassifier.train(instanceList, parameter);
REQUIRE_THAT(53.24, Catch::Matchers::WithinAbs(100 * randomClassifier.test(tictactoe.getInstanceList())->getErrorRate(), 0.01));
randomClassifier = RandomModel();
instanceList = nursery.getInstanceList();
randomClassifier.train(instanceList, parameter);
REQUIRE_THAT(80.05, Catch::Matchers::WithinAbs(100 * randomClassifier.test(nursery.getInstanceList())->getErrorRate(), 0.01));
randomClassifier = RandomModel();
instanceList = chess.getInstanceList();
randomClassifier.train(instanceList, parameter);
REQUIRE_THAT(94.43, Catch::Matchers::WithinAbs(100 * randomClassifier.test(chess.getInstanceList())->getErrorRate(), 0.01));
}