-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinearPerceptronTest.cpp
57 lines (55 loc) · 3.06 KB
/
LinearPerceptronTest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
//
// Created by Olcay Taner YILDIZ on 11.01.2021.
//
#include "catch.hpp"
#include "../src/DataSet/DataSet.h"
#include "../src/Model/NeuralNetwork/LinearPerceptronModel.h"
TEST_CASE("LinearPerceptronTest") {
DataSet iris, bupa, dermatology;
vector<AttributeType> attributeTypes;
for (int i = 0; i < 4; i++) {
attributeTypes.emplace_back(AttributeType::CONTINUOUS);
}
DataDefinition dataDefinition = DataDefinition(attributeTypes);
iris = DataSet(dataDefinition, ",", "datasets/iris.data");
attributeTypes.clear();
for (int i = 0; i < 6; i++) {
attributeTypes.emplace_back(AttributeType::CONTINUOUS);
}
dataDefinition = DataDefinition(attributeTypes);
bupa = DataSet(dataDefinition, ",", "datasets/bupa.data");
attributeTypes.clear();
for (int i = 0; i < 34; i++) {
attributeTypes.emplace_back(AttributeType::CONTINUOUS);
}
dataDefinition = DataDefinition(attributeTypes);
dermatology = DataSet(dataDefinition, ",", "datasets/dermatology.data");
SECTION("train"){
LinearPerceptronModel linearPerceptron = LinearPerceptronModel();
InstanceList instanceList = iris.getInstanceList();
auto* linearPerceptronParameter = new LinearPerceptronParameter(1, 0.1, 0.99, 0.2, 100);
linearPerceptron.train(instanceList, linearPerceptronParameter);
REQUIRE_THAT(2.67, Catch::Matchers::WithinAbs(100 * linearPerceptron.test(iris.getInstanceList())->getErrorRate(), 0.01));
linearPerceptron = LinearPerceptronModel();
instanceList = bupa.getInstanceList();
linearPerceptronParameter = new LinearPerceptronParameter(1, 0.001, 0.99, 0.2, 100);
linearPerceptron.train(instanceList, linearPerceptronParameter);
REQUIRE_THAT(30.72, Catch::Matchers::WithinAbs(100 * linearPerceptron.test(bupa.getInstanceList())->getErrorRate(), 0.01));
linearPerceptron = LinearPerceptronModel();
instanceList = dermatology.getInstanceList();
linearPerceptronParameter = new LinearPerceptronParameter(1, 0.1, 0.99, 0.2, 100);
linearPerceptron.train(instanceList, linearPerceptronParameter);
REQUIRE_THAT(2.46, Catch::Matchers::WithinAbs(100 * linearPerceptron.test(dermatology.getInstanceList())->getErrorRate(), 0.01));
}
SECTION("load"){
LinearPerceptronModel linearPerceptron = LinearPerceptronModel();
linearPerceptron.loadModel("models/linearPerceptron-iris.txt");
REQUIRE_THAT(3.33, Catch::Matchers::WithinAbs(100 * linearPerceptron.test(iris.getInstanceList())->getErrorRate(), 0.01));
linearPerceptron = LinearPerceptronModel();
linearPerceptron.loadModel("models/linearPerceptron-bupa.txt");
REQUIRE_THAT(31.88, Catch::Matchers::WithinAbs(100 * linearPerceptron.test(bupa.getInstanceList())->getErrorRate(), 0.01));
linearPerceptron = LinearPerceptronModel();
linearPerceptron.loadModel("models/linearPerceptron-dermatology.txt");
REQUIRE_THAT(0.82, Catch::Matchers::WithinAbs(100 * linearPerceptron.test(dermatology.getInstanceList())->getErrorRate(), 0.01));
}
}