-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepNetworkTest.cpp
57 lines (55 loc) · 3.01 KB
/
DeepNetworkTest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
//
// Created by Olcay Taner YILDIZ on 11.01.2021.
//
#include "catch.hpp"
#include "../src/DataSet/DataSet.h"
#include "../src/Model/NeuralNetwork/DeepNetworkModel.h"
TEST_CASE("DeepNetworkTest") {
DataSet iris, bupa, dermatology;
vector<AttributeType> attributeTypes;
for (int i = 0; i < 4; i++) {
attributeTypes.emplace_back(AttributeType::CONTINUOUS);
}
DataDefinition dataDefinition = DataDefinition(attributeTypes);
iris = DataSet(dataDefinition, ",", "datasets/iris.data");
attributeTypes.clear();
for (int i = 0; i < 6; i++) {
attributeTypes.emplace_back(AttributeType::CONTINUOUS);
}
dataDefinition = DataDefinition(attributeTypes);
bupa = DataSet(dataDefinition, ",", "datasets/bupa.data");
attributeTypes.clear();
for (int i = 0; i < 34; i++) {
attributeTypes.emplace_back(AttributeType::CONTINUOUS);
}
dataDefinition = DataDefinition(attributeTypes);
dermatology = DataSet(dataDefinition, ",", "datasets/dermatology.data");
SECTION("train"){
DeepNetworkModel deepNetwork = DeepNetworkModel();
InstanceList instanceList = iris.getInstanceList();
auto* deepNetworkParameter = new DeepNetworkParameter(1, 0.1, 0.99, 0.2, 100, vector<int>({5, 5}), ActivationFunction::SIGMOID);
deepNetwork.train(instanceList, deepNetworkParameter);
REQUIRE_THAT(2.67, Catch::Matchers::WithinAbs(100 * deepNetwork.test(iris.getInstanceList())->getErrorRate(), 0.01));
deepNetwork = DeepNetworkModel();
instanceList = bupa.getInstanceList();
deepNetworkParameter = new DeepNetworkParameter(1, 0.01, 0.99, 0.2, 100, vector<int>({15, 15}), ActivationFunction::SIGMOID);
deepNetwork.train(instanceList, deepNetworkParameter);
REQUIRE_THAT(29.86, Catch::Matchers::WithinAbs(100 * deepNetwork.test(bupa.getInstanceList())->getErrorRate(), 0.01));
deepNetwork = DeepNetworkModel();
instanceList = dermatology.getInstanceList();
deepNetworkParameter = new DeepNetworkParameter(1, 0.01, 0.99, 0.2, 100, vector<int>({20}), ActivationFunction::SIGMOID);
deepNetwork.train(instanceList, deepNetworkParameter);
REQUIRE_THAT(2.73, Catch::Matchers::WithinAbs(100 * deepNetwork.test(dermatology.getInstanceList())->getErrorRate(), 0.01));
}
SECTION("load"){
DeepNetworkModel deepNetwork = DeepNetworkModel();
deepNetwork.loadModel("models/deepNetwork-iris.txt");
REQUIRE_THAT(1.33, Catch::Matchers::WithinAbs(100 * deepNetwork.test(iris.getInstanceList())->getErrorRate(), 0.01));
deepNetwork = DeepNetworkModel();
deepNetwork.loadModel("models/deepNetwork-bupa.txt");
REQUIRE_THAT(28.99, Catch::Matchers::WithinAbs(100 * deepNetwork.test(bupa.getInstanceList())->getErrorRate(), 0.01));
deepNetwork = DeepNetworkModel();
deepNetwork.loadModel("models/deepNetwork-dermatology.txt");
REQUIRE_THAT(1.09, Catch::Matchers::WithinAbs(100 * deepNetwork.test(dermatology.getInstanceList())->getErrorRate(), 0.01));
}
}