Website for the CheXagent Reader Study
The responses are saved to a MongoDB dataset. The DICOM images are loaded from a GCP Bucket and displayed via an embedded version of a Cornerstone3D component, which has windowing, zooming, and panning.
To run the app:
streamlit run app.py
Organize the data specifying the samples in data/<id>.csv
with the following structure:
sample_id,study_id,images,indication,candidate,reference
0,p14_p14841168_s52365850,['ffd311aa-b1ad24f7-29b178ef-4423264a-d0298e46.dcm'],"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.","Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.","Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua."
...
sample_id
: integer specifying the order the samples will be presented instudy_id
: string specifying the folder name containing the sample DICOM filesimages
: string representation of a list of .dcm file namesindication
: string of exam indicationcandidate
: string of CheXagent generated reportreference
: string of reference report (not used in the reader study)
readers.yaml
: Reader credentials, used to specify the samples each readers see so you can show each reader
different samples.
credentials:
usernames:
reader1: # username
password: reader1 # password
id: 1 # loads samples from 1.csv
name: Reader 1 # name
...
cookie:
expiry_days: 0
key: random_signature_key # Must be string
name: random_cookie_name
Other Relevant Files:
cors.json
: CORS configuration for ViLMedic