-
Notifications
You must be signed in to change notification settings - Fork 177
/
Copy pathconvert.py
executable file
·366 lines (338 loc) · 13.9 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle
import tempfile
import paddle2onnx.paddle2onnx_cpp2py_export as c_p2o
from paddle2onnx.utils import logging, paddle2onnx_export_configs
from contextlib import contextmanager
from paddle.decomposition import decomp
from paddle.base.executor import global_scope
import shutil
import traceback
PADDLE2ONNX_EXPORT_TEMP_DIR = None
def get_tmp_dir_and_file(model_filename, suffix=""):
global PADDLE2ONNX_EXPORT_TEMP_DIR
if PADDLE2ONNX_EXPORT_TEMP_DIR is None:
PADDLE2ONNX_EXPORT_TEMP_DIR = tempfile.mkdtemp()
model_file_path, _ = os.path.splitext(model_filename)
new_model_file_path = os.path.join(
PADDLE2ONNX_EXPORT_TEMP_DIR, os.path.basename(model_file_path) + suffix
)
new_model_file_name = new_model_file_path + ".json"
new_params_file_name = new_model_file_path + ".pdiparams"
return (
model_file_path,
new_model_file_path,
new_model_file_name,
new_params_file_name,
)
def compare_programs(original_program, new_program):
"""Compares two pir programs' operations."""
original_ops = [op.name() for op in original_program.global_block().ops]
new_ops = [op.name() for op in new_program.global_block().ops]
return original_ops == new_ops
def save_program(program, new_model_file_path):
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
# Find feed and fetch operations
feed, fetch = [], []
# TODO(wangmingkai02): need double check it
for op in program.global_block().ops:
if op.name() == "pd_op.feed":
feed.extend(op.results())
if op.name() == "pd_op.fetch" or op.name() == "builtin.shadow_output":
fetch.extend(op.operands_source())
with paddle.pir_utils.IrGuard():
paddle.static.save_inference_model(
new_model_file_path, feed, fetch, exe, program=program
)
def load_parameter(program):
params = []
opts = []
for var in program.list_vars():
if var.is_parameter or var.get_defining_op().name() == "builtin.parameter":
params.append(var)
elif var.persistable and var.get_defining_op().name() == "pd_op.data":
opts.append(var)
vars_list = params + opts
vars = [var for var in vars_list if var.persistable]
if vars is None:
return
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
paddle.base.libpaddle.pir.create_loaded_parameter(
vars, global_scope(), exe._default_executor
)
def decompose_program(model_filename):
"""Decomposes the given pir program."""
model_file_path, new_model_file_path, new_model_file_name, new_params_file_name = (
get_tmp_dir_and_file(model_filename, "_decompose")
)
model = paddle.jit.load(model_file_path)
new_program = model.program().clone()
with decomp.prim_guard():
decomp.decompose_dist_program(new_program)
if compare_programs(model.program(), new_program):
return model_filename
load_parameter(new_program)
save_program(new_program, new_model_file_path)
return new_model_file_name
def get_old_ir_guard():
# For old version of PaddlePaddle, do nothing guard is returned.
@contextmanager
def dummy_guard():
yield
if not hasattr(paddle, "pir_utils"):
return dummy_guard
pir_utils = paddle.pir_utils
if not hasattr(pir_utils, "DygraphOldIrGuard"):
return dummy_guard
return pir_utils.DygraphOldIrGuard
def export(
model_filename,
params_filename,
save_file=None,
opset_version=7,
auto_upgrade_opset=True,
dist_prim_all=False,
verbose=False,
enable_onnx_checker=True,
enable_experimental_op=True,
enable_optimize=True,
custom_op_info=None,
deploy_backend="onnxruntime",
calibration_file="",
external_file="",
export_fp16_model=False,
optimize_tool="onnxoptimizer",
):
global PADDLE2ONNX_EXPORT_TEMP_DIR
# check model_filename
assert os.path.exists(
model_filename
), f"Model file {model_filename} does not exist."
if not os.path.exists(params_filename):
logging.warning(
f"Params file {params_filename} does not exist, "
+ "the exported onnx model will not contain weights."
)
params_filename = ""
try:
if model_filename.endswith(".pdmodel"):
# translate old ir program to pir program
logging.warning(
"The .pdmodel file is deprecated in paddlepaddle 3.0"
+ " and will be removed in the future."
+ " Try to convert from .pdmodel file to json file."
)
(
model_file_path,
new_model_file_path,
new_model_file_name,
new_params_file_name,
) = get_tmp_dir_and_file(model_filename, "_pt")
if os.path.exists(params_filename):
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
with paddle.pir_utils.OldIrGuard():
[inference_program, feed_target_names, fetch_targets] = (
paddle.static.load_inference_model(model_file_path, exe)
)
program = paddle.pir.translate_to_pir(inference_program.desc)
# TODO(wangmingkai02): Do we need to call load_parameter(program) here?
load_parameter(program)
save_program(program, new_model_file_path)
params_filename = new_params_file_name
if not os.path.exists(new_params_file_name):
raise RuntimeError(
f"Program Tranlator failed due to params file {new_params_file_name} does not exist."
)
else:
with paddle.pir_utils.OldIrGuard():
program = paddle.load(model_filename)
pir_program = paddle.pir.translate_to_pir(program.desc)
with paddle.pir_utils.IrGuard():
paddle.save(pir_program, new_model_file_name)
if not os.path.exists(new_model_file_name):
raise RuntimeError(
f"Program Tranlator failed due to json file {new_model_file_name} does not exist."
)
model_filename = new_model_file_name
if verbose:
logging.info("Complete the conversion from .pdmodel to json file.")
if paddle.get_flags("FLAGS_enable_pir_api")["FLAGS_enable_pir_api"]:
if dist_prim_all and auto_upgrade_opset:
if verbose:
logging.info("Try to decompose program ...")
# TODO(wangmingkai02): Do we need to update params_filename here?
model_filename = decompose_program(model_filename)
if verbose:
logging.info("Complete the decomposition of combined operators.")
if verbose and PADDLE2ONNX_EXPORT_TEMP_DIR is not None:
logging.info(
f"Intermediate model and param files are saved at {PADDLE2ONNX_EXPORT_TEMP_DIR}"
)
deploy_backend = deploy_backend.lower()
if custom_op_info is None:
onnx_model_str = c_p2o.export(
model_filename,
params_filename,
opset_version,
auto_upgrade_opset,
verbose,
enable_onnx_checker,
enable_experimental_op,
enable_optimize,
{},
deploy_backend,
calibration_file,
external_file,
export_fp16_model,
)
else:
onnx_model_str = c_p2o.export(
model_filename,
params_filename,
opset_version,
auto_upgrade_opset,
verbose,
enable_onnx_checker,
enable_experimental_op,
enable_optimize,
custom_op_info,
deploy_backend,
calibration_file,
external_file,
export_fp16_model,
)
except Exception as error:
logging.error(f"Failed to convert PaddlePaddle model: {error}.")
logging.error(traceback.print_exc())
finally:
if (
os.environ.get("P2O_KEEP_TEMP_MODEL", "0").lower()
not in [
"1",
"true",
"on",
]
and PADDLE2ONNX_EXPORT_TEMP_DIR is not None
):
logging.warning(
"Intermediate model and param files will be deleted,"
+ " if you want to keep them, please set env variable `P2O_KEEP_TEMP_MODEL` to True."
)
shutil.rmtree(PADDLE2ONNX_EXPORT_TEMP_DIR, ignore_errors=True)
PADDLE2ONNX_EXPORT_TEMP_DIR = None
if save_file is not None:
# if optimize_tool == "onnxsim":
# try:
# logging.info(
# "Try to perform optimization on the ONNX model with Onnx Simplifier."
# )
# import io
# import onnx
# from onnxsim import simplify
# model_stream = io.BytesIO(onnx_model_str)
# onnx_model = onnx.load_model(model_stream)
# simplified_model, check = simplify(onnx_model)
# if check:
# onnx.save(simplified_model, save_file)
# else:
# logging.warning(f"Fail to simplify onnx model. Skip simplifying.")
# except Exception as error:
# logging.warning(
# f"Fail to simplify onnx model with error: {error}. Skip simplifying."
# )
# with open(save_file, "wb") as f:
# f.write(onnx_model_str)
if optimize_tool == "onnxoptimizer":
try:
logging.info(
"Try to perform optimization on the ONNX model with onnxoptimizer."
)
import io
import onnx
import onnxoptimizer
model_stream = io.BytesIO(onnx_model_str)
onnx_model = onnx.load_model(model_stream)
passes = [
"eliminate_deadend",
"eliminate_identity",
]
optimized_model = onnxoptimizer.optimize(onnx_model, passes)
onnx.save(optimized_model, save_file)
except Exception as error:
logging.warning(
f"Fail to optimize onnx model with error: {error}. Skip onnxoptimizer."
)
with open(save_file, "wb") as f:
f.write(onnx_model_str)
elif optimize_tool == "polygraphy":
try:
logging.info(
"Try to perform constant folding on the ONNX model with Polygraphy."
)
os.environ["POLYGRAPHY_AUTOINSTALL_DEPS"] = "1"
import io
import onnx
from polygraphy.backend.onnx import fold_constants
model_stream = io.BytesIO(onnx_model_str)
onnx_model = onnx.load_model(model_stream)
folded_model = fold_constants(onnx_model)
onnx.save(folded_model, save_file)
except Exception as error:
logging.warning(
f"Fail to fold onnx model with error: {error}. Skip folding."
)
with open(save_file, "wb") as f:
f.write(onnx_model_str)
else:
with open(save_file, "wb") as f:
f.write(onnx_model_str)
logging.info("ONNX model saved in {}.".format(save_file))
else:
return onnx_model_str
def dygraph2onnx(layer, save_file, input_spec=None, opset_version=9, **configs):
paddle_model_dir = tempfile.mkdtemp()
try:
save_configs, export_configs = paddle2onnx_export_configs(configs)
if paddle.get_flags("FLAGS_enable_pir_api")["FLAGS_enable_pir_api"]:
model_file = os.path.join(paddle_model_dir, "model.json")
else:
model_file = os.path.join(paddle_model_dir, "model.pdmodel")
paddle.jit.save(
layer, os.path.join(paddle_model_dir, "model"), input_spec, **save_configs
)
if not os.path.isfile(model_file):
raise ValueError("Failed to save static PaddlePaddle model.")
logging.info("Static PaddlePaddle model saved in {}.".format(paddle_model_dir))
params_file = os.path.join(paddle_model_dir, "model.pdiparams")
if not os.path.isfile(params_file):
params_file = ""
export(model_file, params_file, save_file, opset_version, **export_configs)
except Exception as err:
logging.error(f"Failed to convert PaddlePaddle model due to {err}.")
finally:
if os.environ.get("P2O_KEEP_TEMP_MODEL", "0").lower() not in [
"1",
"true",
"on",
]:
logging.warning(
"Static PaddlePaddle model will be deleted, if you want to keep it,"
+ " please set env variable `P2O_KEEP_TEMP_MODEL` to True."
)
shutil.rmtree(paddle_model_dir, ignore_errors=True)