-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmarking.py
289 lines (240 loc) · 9.37 KB
/
marking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# -*- coding: utf-8 -*-
import re
import pathlib
import copy
import numpy as np
import pandas as pd
# import pyparsing
import keytable
# import pypx
import classes
Path = pathlib.Path('~/Teaching/examsystem/').expanduser()
STUDENTKEYS = ['name', 'no', 'class', 'gender']
DAILY_RATIO = .2
EXAM_RATIO = .8
def adjust(r2, R=60):
# rectification
r1 = np.ceil((R-DAILY_RATIO*r2)/DAILY_RATIO)
return r1
def count(nums, key=lambda x: x>=60):
if isinstance(key, int):
return len([a for a in nums if key<=a])
elif isinstance(key, (tuple, list)):
return len([a for a in nums if key[0]<=a<=key[1]])
else:
return len([a for a in nums if key(a)])
def ratio(nums, key=lambda x: x>=60):
return count(nums, key) / len(nums)
class Marking:
def __init__(self, class_, scores=None):
self.class_=class_
self.scores = scores
self.diff = diff = 5
self.dict ={'A+':100, 'A':100-diff, 'A-':100-2*diff, 'B+':100-3*diff, 'B':100-4*diff, 'B-':100-5*diff, '':0, np.NaN:0}
# self.dict ={'A+':100, 'A':100-diff, 'A-':100-2*diff, 'B+':100-3*diff, 'B':100-4*diff, 'B-':100-5*diff, '':0}
@staticmethod
def fromClass(c):
index = []
body = []
for s in c.members:
index.append(s.no)
body.append([v for k, v in s.score.items()])
df = pd.DataFrame(body, index=pd.Index(index, name='no'), columns=s.score.keys())
m = Marking(c, df)
m.keys = s.score.keys()
return m
def toClass(self):
c = self.class_
for s in c:
s.score.update({k:self.scores.loc[s.no, k] for k in ('daily', 'exam', 'total')})
return c
# basic methods
def convert(self):
def toint(s):
if s in self.dict:
return self.dict[s]
elif isinstance(s, str) and 1<=len(s)<=3 and s.isdigit():
return int(s)
else:
return s
self.apply(toint)
def apply(self, func):
self.scores = pd.DataFrame([[func(a) for a in r] for k, r in self.scores.iterrows()], index=self.scores.index, columns=self.scores.columns)
# def del_zero(self):
# self.scores = self.scores.loc[lambda df: df.exam>0]
def __len__(self):
if self.scores is None:
return 0
else:
return len(self.scores)
def copy(self):
cpy = Marking(self.class_)
if self.scores:
cpy.scores = copy.deepcopy(self.scores)
return cpy
# advanced methods
def get_exam(self):
return self.scores['exam']
def get_daily(self):
cpy = self % (['daily','total','exam','extra'])
return cpy.values
def get_extra(self):
cpy = self % (['daily','total','exam'])
return cpy.values
def __mod__(self, lst):
sc = self.scores.copy()
for item in lst:
if item in sc.keys():
sc.pop(item)
return sc
def calc_daily(self, lst):
d = 0
N = 0
for a, b in zip(self.keys, lst):
if a in {'class', 'name', 'no', 'gender', '班级', '姓名', '学号', '性别'}:
continue
if a.startswith('present') or a.startswith('签到'):
d += b * 50
N += 0.5
elif a.startswith('c'):
if b == 1:
d += 60
else:
d += 100
N += 1
elif a != 'extra':
w = self.weight.get(a, 1)
d += b * w
N += w
return d / N
def calc_diff(self):
# self.ab ={'A+':100, 'A':100-diff, 'A-':100-2*diff, 'b+':100-3*diff, 'B':100-4*diff, 'B-':100-5*diff, '0':0}
exam = self.get_exam()
Sm = 100
for diff in np.linspace(3, 6, 50):
ab = {'A+':100, 'A':100-diff, 'A-':100-2*diff, 'B+':100-3*diff, 'B':100-4*diff, 'B-':100-5*diff, '0':0}
scores = [self.calc_daily([ab.get(a, a) for a in w]) for w in self.get_daily()]
S = np.mean(tuple(map(lambda x,y:abs(x-y), scores, exam)))
if S < Sm:
Sm = S
self.diff = diff
self.dict = {'A+':100, 'A':100-self.diff, 'A-':100-2*self.diff, 'B+':100-3*self.diff, 'B':100-4*self.diff, 'B-':100-5*self.diff, '0':0}
def stat(self, key='exam', show=True):
# statistics
scores = self.scores[key]
mean = np.mean(scores)
var = np.var(scores)
rate = ratio(scores, 60)
freq = count(scores, (90,100)), count(scores, (80,89)), count(scores, (70,79)), count(scores, (60,69)), count(scores, (0,59)), count(scores, (50,59)), count(scores, (0,49))
dist = ratio(scores, (90,100)), ratio(scores, (80,89)), ratio(scores, (70,79)), ratio(scores, (60,69)), ratio(scores, (0,59)), ratio(scores, (50,59)), ratio(scores, (0,49))
if show:
print('class: %s(%d)'%(self.class_, self.class_.examSize))
print('%s result:'%key)
print('mean: %.2f\nvariance: %.2f\nrate: %.2f%%'%(mean, var, rate*100))
print('frequency: %d, %d, %d, %d, %d(=%d+%d)'%freq)
print('distribution: %.2f%%, %.2f%%, %.2f%%, %.2f%%, %.2f%%(=%.2f%%+%.2f%%)'%tuple(d * 100 for d in dist))
return mean, var, rate, freq, dist
def report(self):
# self.del_zero()
print('------------REPORT-------------')
exam_result = self.stat()
print('--------------------------------')
exam_result = self.stat('daily')
print('--------------------------------')
if 'total' in self.scores:
final_result = self.stat('total')
else:
print('no total result')
print('--------------------------------')
def bar(self, label=None, folder=Path):
if label is None:
label = self.class_.name
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
font = FontProperties(fname = "/usr/share/fonts/truetype/arphic/ukai.ttc", size=14)
X = np.array([1,2,3,4,5])
width = 0.75
Y = self.stat(key='total', show=False)[4][:5]
p = plt.bar(X, Y, width, facecolor='blue')
plt.xticks(X + width/2, ('Excellent','Good','Average','Fair','Poor'))
plt.legend((p[0],), (label,), loc='upper left')
# plt.show()
plt.savefig(folder + self.class_.name)
def marking(self):
# get total grade and correct daily grade
total=[]
daily=[]
print(self.class_.name+':')
print('no: homework(raw) examination final result')
N=0
# calculate diff, then convert
self.calc_diff()
self.convert()
d = self.get_daily()
x = self.scores['exam']
for k, xk in enumerate(x):
r1, r2 = self.calc_daily(d[k]), xk # score1, score2
if 'extra' in self.keys and self.scores.iloc[k]['extra']>0:
r1 += self.scores.iloc[k]['extra']
rr = r1 = np.ceil(np.mean(r1)) # calculate score1 and save it
R=round(EXAM_RATIO*r1+DAILY_RATIO*r2) # total score
# case of low score
if 50 <= r2 < 55: # 50-54
R = 60
r1 = adjust(r2, R)
elif 55 <= r2 < 60:
if R >= 61: # 55-59
R = 61
r1 = adjust(r2, R)
else:
R = 60
r1 = adjust(r2, R)
elif 65 > r2 >= 60 and R < 60: # 60-65
R = 60
r1 = adjust(r2, R)
elif r2>=65 and R<=60: # 65+
R = 61
r1 = adjust(r2, R)
if r2 < 50:
if r1-r2 > 15: # too low
r1 = r2+15
if 60 <= r2 <= 89: # high score
if r1-r2 > 10:
r1 = r2+10
elif r2-20>r1:
r1 = r2-20
elif 90 <= r2 < 95:
r1 = max(r2,90)
elif r2 >= 95:
r1 = max(r2, 95)
#elif r2-r1>5:
# r1=r2-5
# S=S+abs(r1-r2)
R = round(EXAM_RATIO*r1+DAILY_RATIO*r2) # re-calculate
print('%d: %d(%d) %d %d'%(k+1,r1,rr,r2,R))
if r2!=0:
total.append(R)
daily.append(r1)
else:
total.append(0)
daily.append(0)
if r1-r2>=20:
N+=1
print('attention: %d'%N)
self.scores['daily'] = daily
self.scores['total'] = total
def write(self, fname=None, sheetname=None):
if sheetname is None:
sheetname = self.class_
if fname is None:
fname = self.class_
self.scores.write(fname, sheetname)
namelists = pathlib.Path('~/Teaching/student lists').expanduser()
c = classes.Class.read_excel(namelists / 'web', sheetname='xinji16', skiprows=0)
c.filter()
m = Marking.fromClass(c)
m.weight ={}
m.marking()
m.report()
c = m.toClass()
c.to_excel(pathlib.Path('test'))