-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunit_tests.cpp
310 lines (266 loc) · 10.7 KB
/
unit_tests.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/*
qNoise: A generator of non-Gaussian colored noise
Copyright © 2021, Juan Ignacio Deza
email: ignacio.deza@uwe.ac.uk
Description
qNoise is a non-gaussian colored random noise generator. It is a handy source of
self-correlated noise for a great variety of applications. It depends on two
parameters only: tau for controlling the autocorrelation, and q for controlling
the statistics. This noise tends smoothly for q = 1 to an Ornstein-Uhlenbeck
(colored gaussian) noise with autocorrelation tau. for q < 1 it is bounded noise
and it is supra-Gaussian for q > 1. The noise is generated via a stochastic
differential equation using the Heun method (a second order Runge-Kutta type
integration scheme) and it is implemented as a stand-alone library in c++. It
Useful as input for numerical simulations, as a source of noise for controlling
experiments using synthetic noise via micro-controllers and for a wide variety
of applications.
Requirements
It is a stand-alone library with no dependencies other than the standard
libraries. Due to it's use of some functions from the <random> library the
library currently works on c++11 or higher only. This should be OK for most Macs
and new Linux systems. In some older systems it is possible that you need to add
`-std=gnu++11` to your compilation flags.
Licence
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
const int bins = 50;
double histComparison(std::vector<double> &value,
std::vector<double> &value_theory);
void calculatePDF(std::vector<double> &key, std::vector<double> &value_theory,
double tau, double q);
void genHistogram(const std::vector<double> &data, std::vector<double> &key,
std::vector<double> &value, long int N, int bins);
double test_gaussWN(const std::vector<double> &data, long int N);
double test_orsUhl(const std::vector<double> &data, double tau, double H,
long int N);
double test_qNoise(const std::vector<double> &data, double tau, double q,
double H, long int N, bool show);
double test_qNoiseNorm(const std::vector<double> &data, double tau, double q,
double H, long int N, bool show);
double histComparison(std::vector<double> &value,
std::vector<double> &value_theory) {
double min = *std::min_element(value.begin(), value.end());
double max = *std::max_element(value.begin(), value.end());
double distance = 0;
for (int i = 0; i < value.size(); i++) {
distance +=
sqrt((value[i] - value_theory[i]) * (value[i] - value_theory[i]));
assert(!isnan(distance));
}
// Average of distance as a percentage of total size of the histogram
int dummy = value.size();
std::vector<double>().swap(value);
std::vector<double>().swap(value_theory);
return distance / dummy / (max - min) * 100;
}
/*
* Generate a histogram from the data with a fixed number of bins the max and
* min of the data are calculated.
*/
void genHistogram(const std::vector<double> &data, std::vector<double> &key,
std::vector<double> &value, long int N, int bins) {
double min = *std::min_element(data.begin(), data.end());
double max = *std::max_element(data.begin(), data.end());
for (double x = min; x < max; x += (max - min) / bins) {
key.push_back(x);
value.push_back(0);
}
for (int i = 0; i < N; i++) {
int x = int(round((data[i] - min) / (max - min) * bins));
assert(isnormal(x + 1));
value[x] += 1.0 / N / ((max - min) * bins);
}
return;
}
void calculatePDF(std::vector<double> &key, std::vector<double> &value_theory,
double tau, double q) {
double total = 0;
double min = *std::min_element(key.begin(), key.end());
double max = *std::max_element(key.begin(), key.end());
if (q == 1) {
for (int i = 0; i < key.size(); i++) {
double v = exp(-tau * key[i] * key[i]);
assert(!isnan(v));
value_theory.push_back(v);
total += v;
}
} else if (q < 1) {
double w = pow((1 - q) * tau, -.5);
// cutoff
for (int i = 0; i < key.size(); i++) {
double v = pow((1 - (key[i] / w) * (key[i] / w)), (1 / (1 - q)));
if (isnan(v))
// Some bins fall outside the defined support
v = 0;
value_theory.push_back(v);
total += v;
}
} else if (q > 1) {
for (int i = 0; i < key.size(); i++) {
double v = pow((1 + tau * (q - 1) * key[i] * key[i]), (1 / (1 - q)));
assert(!isnan(v));
value_theory.push_back(v);
total += v;
}
}
for (int i = 0; i < key.size(); i++) {
value_theory[i] /= total * ((max - min) * bins);
}
return;
}
/*
* Unit Test for gaussWN(). get a distribution and compare it with the
* theoretical PDF.
*/
double test_gaussWN(const std::vector<double> &data, long int N) {
std::vector<double> key, value, value_theory;
// Generate histogram from the data
genHistogram(data, key, value, N, bins);
// Theoretical value from formula
calculatePDF(key, value_theory, 0.5, 1);
// Calculate the "distance" between the histogram and the PDF
std::vector<double>().swap(key);
return histComparison(value, value_theory);
}
/*
* Unit Test for orsUhl().get distributions with different tau and compare
* them to the theoretical PDF.
*/
double test_orsUhl(const std::vector<double> &data, double tau, double H,
long int N) {
std::vector<double> key, value, value_theory;
// Generate histogram from the data
genHistogram(data, key, value, N, bins);
// Theoretical value from formula
calculatePDF(key, value_theory, tau, 1);
// Calculate the "distance" between the histogram and the PDF
std::vector<double>().swap(key);
return histComparison(value, value_theory);
}
/*
* Unit Test for qNoise(). Will generate Distributions with different tau and
* q and compare them to the theoretical PDF.
*/
double test_qNoise(const std::vector<double> &data, double tau, double q,
double H, long int N, bool show = false) {
std::vector<double> key, value, value_theory;
// Generate histogram from the data
genHistogram(data, key, value, N, bins);
// Theoretical value from formula
calculatePDF(key, value_theory, tau, q);
// Calculate the "distance" between the histogram and the PDF
std::vector<double>().swap(key);
return histComparison(value, value_theory);
}
double test_qNoiseNorm(const std::vector<double> &data, double tau, double q,
double H, long int N, bool show = false) {
tau = tau * (5 - 3 * q) / 2;
return test_qNoise(data, tau, q, H, N, show);
}
/* Main function for unit testing purposes only */
int main() {
long int NArray[] = {int(1e4),int(1e5),int(1e6),int(1e7)};
double limit = 10;
double q[] = {0.1 , 0.2 , 0.3 , 0.4 , 0.5 , 0.6 , 0.7 , 0.8 , 0.9 , 1. , 1.1 , 1.2 , 1.3 };
double tau[] = {0.1 , 1., 10., 100.};
double H = 0.001, sqrt_H = sqrt(H);
std::vector<double> data(int(1e7));
qNoiseGen gen;
// gen.seedManual(01234567); //Manual seeding, comment for automatic seeding
bool simple_example = false;
if (simple_example) {
double t = 100, qi = .001;
int N = int(1e8);
double old = gen.gaussWN();
// First point
for (int i = 0; i < N; i++) {
double tmp = gen.qNoiseNorm(old, t, qi, H, sqrt_H);
assert(isnormal(tmp));
data[i] = tmp;
old = tmp;
}
double dist = test_qNoiseNorm(data, t, qi, H, N, true);
std::string test =
(dist <= 5) ? "..................PASSED" : "..................FAILED";
std::cout << "tau: " << t << ", q: " << qi << ", N: " << N
<< ", distance: " << dist << " \%" << test << "\n";
}
std::cout << "Unit test of Algorithms by the square of the difference "
"between histogram and theoretical PDF.\n";
// White Noise
for (long int N : NArray) {
for (int i = 0; i < N; i++)
data[i] = gen.gaussWN();
double x = test_gaussWN(data, N);
std::string test =
(x <= limit) ? "PASSED" : "FAILED";
std::cout << "Gaussian White Noise, N= " << N << ", difference= " << x
<< "\%, limit= " << limit << "\%, result:.................." << test << std::endl;
}
// Ornstein - Uhlenbeck noise
for (double t : tau) {
for (long int N : NArray) {
double old = gen.gaussWN();
// First point
for (int i = 0; i < N; i++) {
double tmp = gen.orsUhl(old, t, H);
assert(isnormal(tmp));
data[i] = tmp;
old = tmp;
}
double x = test_orsUhl(data, t, H, N);
std::string test = (x <= limit) ? "PASSED" : "FAILED";
std::cout << "Ornstein-Uhlenbeck, N= " << N << ", tau= " << t
<< ", difference= " << x << "\%, limit= " << limit
<< "\%, result:.................." << test << std::endl;
}
}
// qNoise
for (long int N : NArray)
for (double t : tau)
for (double qi : q){
double old = gen.gaussWN();
// First point
for (int i = 0; i < N; i++) {
double tmp = gen.qNoise(old, t, qi, H, sqrt_H);
assert(isnormal(tmp));
data[i] = tmp;
old = tmp;
}
double x = test_qNoise(data, t, qi, H, N);
std::string test = (x <= limit) ? "PASSED"
: "FAILED";
std::cout << "Qnoise, N= " << N << ", tau= " << t << ",q= " << qi
<< ", difference= " << x << "\%, limit= " << limit
<< "\%, result:.................." << test << std::endl;
}
// Normalized qNoise
for (double t : tau)
for (double qi : q)
for (long int N : NArray) {
double old = gen.gaussWN();
// First point
for (int i = 0; i < N; i++) {
double tmp = gen.qNoiseNorm(old, t, qi, H, sqrt_H);
assert(isnormal(tmp));
data[i] = tmp;
old = tmp;
}
double x = test_qNoise(data, t, qi, H, N);
std::string test = (x <= limit) ? "PASSED"
: "FAILED";
std::cout << "Normalized Qnoise, N= " << N << ", tau= " << t << ",q= " << qi
<< ", difference= " << x << "\%, limit= " << limit
<< "\%, result:.................." << test << std::endl;
}
return 0;
}