-
Notifications
You must be signed in to change notification settings - Fork 426
/
Copy pathfield_mul.go
1014 lines (960 loc) · 33.9 KB
/
field_mul.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package emulated
import (
"fmt"
"math/big"
"math/bits"
"slices"
"github.com/consensys/gnark/frontend"
limbs "github.com/consensys/gnark/std/internal/limbcomposition"
"github.com/consensys/gnark/std/multicommit"
)
// deferredChecker is an interface for deferring a check in non-native
// arithmetic. The idea of the deferred check is that we do not compute the
// check immediately, but we store the values and the check to be done later.
// This allows us to share the verifier challenge computation between multiple
// checks.
//
// Currently used for multiplication and multivariate evaluation checks.
type deferredChecker interface {
// toCommit outputs the variable which should be committed to. The checker
// then uses the commitment to obtain the verifier challenge for the
// Schwartz-Zippel lemma.
toCommit() []frontend.Variable
// maxLen returns the maximum number of limbs in the deferred check. This is
// used for computing the number of powers of the verifier challenge to
// compute
maxLen() int
// evalRound1 evaluates the first round of the check at with the random
// challenge, given through its powers at. In the first round we do not
// assume that any of the values is already evaluated as they come directly
// from hint.
//
// The method should store the evaluation result inside the Element and mark
// it as evaluated. If the method is called for already evaluated input then
// should assume that the challenge is the same as the one used for the
// evaluation.
evalRound1(at []frontend.Variable)
// evalRound2 evaluates the second round of the check at a given random point
// at[0]. However, it may happen that some of the values are equal to the
// result from a previous check. In that case we can reuse the evaluation to
// save constraints.
//
// The method should store the evaluation result inside the Element and mark
// it as evaluated. If the method is called for already evaluated input then
// should assume that the challenge is the same as the one used for the
// evaluation.
evalRound2(at []frontend.Variable)
// check checks the correctness of the deferred check. The method should use
// the stored evaluations. We additionally provide the evaluation of
// p(challenge) and (2^t-challenge) as they are static over all checks.
check(api frontend.API, peval frontend.Variable, coef frontend.Variable)
// cleanEvaluations cleans the cached evaluation values. This is necessary for
// ensuring the circuit stability over many compilations.
cleanEvaluations()
}
// mulCheck represents a single multiplication check. Instead of doing a
// multiplication exactly where called, we compute the result using hint and
// return it. Additionally, we store the correctness check for later checking
// (together with every other multiplication) to share the verifier challenge
// computation.
//
// With this approach this is important that we do not change the [Element]
// values after they are returned from [mulMod] as mulCheck keeps pointers and
// the check will fail if the values referred to by the pointers change. By
// following the [Field] public methods this shouldn't happen as we always take
// and return pointers, and to change the values the user has to explicitly
// dereference.
//
// We store the values a, b, r, k, c. They are as follows:
// - a, b - the inputs what we are multiplying. Do not have to be reduced.
// - r - the multiplication result reduced modulo the emulation parameter.
// - k - the quotient for integer multiplication a*b divided by emulation parameter.
// - c - element representing carry. Used only for aligning the limb widths.
//
// Given these values, the following holds:
//
// a * b = r * k*p
//
// But for asserting that the previous equation holds, we instead use the
// polynomial representation of the elements. If a non-native element a is given
// by its limbs
//
// a = (a_0, ..., a_n)
//
// then
//
// a(X) = \sum_i a_i * X^i.
//
// Now, the multiplication check instead becomes
//
// a(X) * b(X) = r(X) + k(X) * p(X) + (2^t-X) c(X),
//
// which can be checked only at a single random point. Here we need an
// additional polynomial c(X) which is used for carrying the overflow bits to
// the consecutive limbs. By subtracting 2^t c(X) we can remove the bits from
// the corresponding coefficients in r(X)+k(X)*p(X) and by adding X c(X) we can
// add the bits to X(r(X) + k(X) * p(X)) (i.e. to the next coefficient).
type mulCheck[T FieldParams] struct {
f *Field[T]
// a * b = r + k*p + c
a, b *Element[T] // inputs
r *Element[T] // reduced value
k *Element[T] // coefficient
c *Element[T] // carry
p *Element[T] // modulus if non-nil
}
func (mc *mulCheck[T]) toCommit() []frontend.Variable {
nbToCommit := len(mc.a.Limbs) + len(mc.b.Limbs) + len(mc.r.Limbs) + len(mc.k.Limbs) + len(mc.c.Limbs)
if mc.p != nil {
nbToCommit += len(mc.p.Limbs)
}
toCommit := make([]frontend.Variable, 0, nbToCommit)
toCommit = append(toCommit, mc.a.Limbs...)
toCommit = append(toCommit, mc.b.Limbs...)
toCommit = append(toCommit, mc.r.Limbs...)
toCommit = append(toCommit, mc.k.Limbs...)
toCommit = append(toCommit, mc.c.Limbs...)
if mc.p != nil {
toCommit = append(toCommit, mc.p.Limbs...)
}
return toCommit
}
func (mc *mulCheck[T]) maxLen() int {
maxLen := len(mc.a.Limbs)
maxLen = max(maxLen, len(mc.b.Limbs))
maxLen = max(maxLen, len(mc.r.Limbs))
maxLen = max(maxLen, len(mc.k.Limbs))
maxLen = max(maxLen, len(mc.c.Limbs))
if mc.p != nil {
maxLen = max(maxLen, len(mc.p.Limbs))
}
return maxLen
}
// evalRound1 evaluates first c(X), r(X) and k(X) at a given random point at[0].
// In the first round we do not assume that any of them is already evaluated as
// they come directly from hint.
func (mc *mulCheck[T]) evalRound1(at []frontend.Variable) {
mc.c = mc.f.evalWithChallenge(mc.c, at)
mc.r = mc.f.evalWithChallenge(mc.r, at)
mc.k = mc.f.evalWithChallenge(mc.k, at)
if mc.p != nil {
mc.p = mc.f.evalWithChallenge(mc.p, at)
}
}
// evalRound2 now evaluates a and b at a given random point at[0]. However, it
// may happen that a or b is equal to r from a previous mulcheck. In that case
// we can reuse the evaluation to save constraints.
func (mc *mulCheck[T]) evalRound2(at []frontend.Variable) {
mc.a = mc.f.evalWithChallenge(mc.a, at)
mc.b = mc.f.evalWithChallenge(mc.b, at)
}
// check checks a(ch) * b(ch) = r(ch) + k(ch) * p(ch) + (2^t - ch) c(ch). As the
// computation of p(ch) and (2^t-ch) can be shared over all mulCheck instances,
// then we get them already evaluated as peval and coef.
func (mc *mulCheck[T]) check(api frontend.API, peval, coef frontend.Variable) {
if mc.p != nil {
peval = mc.p.evaluation
}
ls := api.Mul(mc.a.evaluation, mc.b.evaluation)
rs := api.Add(mc.r.evaluation, api.Mul(peval, mc.k.evaluation), api.Mul(mc.c.evaluation, coef))
api.AssertIsEqual(ls, rs)
}
// cleanEvaluations cleans the cached evaluation values. This is necessary for
// ensuring the circuit stability over many compilations.
func (mc *mulCheck[T]) cleanEvaluations() {
mc.a.evaluation = 0
mc.a.isEvaluated = false
mc.b.evaluation = 0
mc.b.isEvaluated = false
mc.r.evaluation = 0
mc.r.isEvaluated = false
mc.k.evaluation = 0
mc.k.isEvaluated = false
mc.c.evaluation = 0
mc.c.isEvaluated = false
if mc.p != nil {
mc.p.evaluation = 0
mc.p.isEvaluated = false
}
}
// mulMod returns a*b mod r. In practice it computes the result using a hint and
// defers the actual multiplication check.
func (f *Field[T]) mulMod(a, b *Element[T], _ uint, p *Element[T]) *Element[T] {
// fast path - if one of the inputs is on zero limbs (it is zero), then the result is also zero
if len(a.Limbs) == 0 || len(b.Limbs) == 0 {
return f.Zero()
}
f.enforceWidthConditional(a)
f.enforceWidthConditional(b)
f.enforceWidthConditional(p)
k, r, c, err := f.callMulHint(a, b, true, p)
if err != nil {
panic(err)
}
mc := mulCheck[T]{
f: f,
a: a,
b: b,
c: c,
k: k,
r: r,
p: p,
}
f.deferredChecks = append(f.deferredChecks, &mc)
return r
}
// checkZero creates multiplication check a * 1 = 0 + k*p.
func (f *Field[T]) checkZero(a *Element[T], p *Element[T]) {
// fast path - the result is on zero limbs. This means that it is constant zero
if len(a.Limbs) == 0 {
return
}
// the method works similarly to mulMod, but we know that we are multiplying
// by one and expected result should be zero.
f.enforceWidthConditional(a)
f.enforceWidthConditional(p)
b := f.One()
k, r, c, err := f.callMulHint(a, b, false, p)
if err != nil {
panic(err)
}
mc := mulCheck[T]{
f: f,
a: a,
b: b, // one on single limb to speed up the polynomial evaluation
c: c,
k: k,
r: r, // expected to be zero on zero limbs.
p: p,
}
f.deferredChecks = append(f.deferredChecks, &mc)
}
// evalWithChallenge represents element a as a polynomial a(X) and evaluates at
// at[0]. For efficiency, we use already evaluated powers of at[0] given by at.
// It stores the evaluation result inside the Element and marks it as evaluated.
// If the method is called for already evaluated a then returns the known value.
func (f *Field[T]) evalWithChallenge(a *Element[T], at []frontend.Variable) *Element[T] {
if a.isEvaluated {
return a
}
if len(at) < len(a.Limbs)-1 {
panic("evaluation powers less than limbs")
}
var sum frontend.Variable = 0
if len(a.Limbs) > 0 {
sum = f.api.Mul(a.Limbs[0], 1) // copy because we use MulAcc
}
for i := 1; i < len(a.Limbs); i++ {
sum = f.api.MulAcc(sum, a.Limbs[i], at[i-1])
}
a.isEvaluated = true
a.evaluation = sum
return a
}
// performMulChecks should be deferred to actually perform all the
// multiplication checks.
func (f *Field[T]) performDeferredChecks(api frontend.API) error {
// use given api. We are in defer and API may be different to what we have
// stored.
// there are no multiplication checks, nothing to do
if len(f.deferredChecks) == 0 {
return nil
}
// we construct a list of elements we want to commit to. Even though we have
// committed when doing range checks, do it again here explicitly for safety.
// TODO: committing is actually expensive in PLONK. We create a constraint
// for every variable we commit to (to set the selector polynomial). So, it
// is actually better not to commit again. However, if we would be to use
// multi-commit and range checks are in different commitment, then we have
// problem.
var toCommit []frontend.Variable
for i := range f.deferredChecks {
toCommit = append(toCommit, f.deferredChecks[i].toCommit()...)
}
// we give all the inputs as inputs to obtain random verifier challenge.
multicommit.WithCommitment(api, func(api frontend.API, commitment frontend.Variable) error {
// for efficiency, we compute all powers of the challenge as slice at.
coefsLen := int(f.fParams.NbLimbs())
for i := range f.deferredChecks {
coefsLen = max(coefsLen, f.deferredChecks[i].maxLen())
}
at := make([]frontend.Variable, coefsLen)
at[0] = commitment
for i := 1; i < len(at); i++ {
at[i] = api.Mul(at[i-1], commitment)
}
// evaluate all r, k, c
for i := range f.deferredChecks {
f.deferredChecks[i].evalRound1(at)
}
// assuming r is input to some other multiplication, then is already evaluated
for i := range f.deferredChecks {
f.deferredChecks[i].evalRound2(at)
}
// evaluate p(X) at challenge
pval := f.evalWithChallenge(f.Modulus(), at)
// compute (2^t-X) at challenge
coef := big.NewInt(1)
coef.Lsh(coef, f.fParams.BitsPerLimb())
ccoef := api.Sub(coef, commitment)
// verify all mulchecks
for i := range f.deferredChecks {
f.deferredChecks[i].check(api, pval.evaluation, ccoef)
}
// clean cached evaluation. Helps in case we compile the same circuit
// multiple times.
for i := range f.deferredChecks {
f.deferredChecks[i].cleanEvaluations()
}
return nil
}, toCommit...)
return nil
}
// callMulHint uses hint to compute r, k and c.
func (f *Field[T]) callMulHint(a, b *Element[T], isMulMod bool, customMod *Element[T]) (quo, rem, carries *Element[T], err error) {
// compute the expected overflow after the multiplication of a*b to be able
// to estimate the number of bits required to represent the result.
nextOverflow, _ := f.mulPreCond(a, b)
// skip error handle - it happens when we are supposed to reduce. But we
// already check it as a precondition. We only need the overflow here.
if !isMulMod {
// b is one on single limb. We do not increase the overflow
nextOverflow = a.overflow
}
nbLimbs, nbBits := f.fParams.NbLimbs(), f.fParams.BitsPerLimb()
// we need to compute the number of limbs for the quotient. To compute it,
// we compute the width of the product of a*b, then we divide it by the
// width of the modulus. We add 1 to the result to ensure that we have
// enough space for the quotient.
modbits := uint(f.fParams.Modulus().BitLen())
if customMod != nil {
// when we're using custom modulus, then we do not really know its
// length ahead of time. We assume worst case scenario and assume that
// the quotient can be the total length of the multiplication result.
modbits = 0
}
nbQuoLimbs := (uint(nbMultiplicationResLimbs(len(a.Limbs), len(b.Limbs)))*nbBits + nextOverflow + 1 - //
modbits + //
nbBits - 1) /
nbBits
// the remainder is always less than modulus so can represent on the same
// number of limbs as the modulus.
nbRemLimbs := nbLimbs
// we need to compute the number of limbs for the carries. It is maximum of
// the number of limbs of the product of a*b or k*p.
nbCarryLimbs := max(nbMultiplicationResLimbs(len(a.Limbs), len(b.Limbs)), nbMultiplicationResLimbs(int(nbQuoLimbs), int(nbLimbs))) - 1
// we encode the computed parameters and widths to the hint function so can
// know how many limbs to expect.
modulusLimbs := f.Modulus().Limbs
if customMod != nil {
modulusLimbs = customMod.Limbs
}
hintInputs := make([]frontend.Variable, 0, 4+len(modulusLimbs)+len(a.Limbs)+len(b.Limbs))
hintInputs = append(hintInputs, nbBits, nbLimbs, len(a.Limbs), nbQuoLimbs)
hintInputs = append(hintInputs, modulusLimbs...)
hintInputs = append(hintInputs, a.Limbs...)
hintInputs = append(hintInputs, b.Limbs...)
ret, err := f.api.NewHint(mulHint, int(nbQuoLimbs)+int(nbRemLimbs)+int(nbCarryLimbs), hintInputs...)
if err != nil {
err = fmt.Errorf("call hint: %w", err)
return
}
// quotient is always range checked according to how many limbs we expect.
quo = f.packLimbs(ret[:nbQuoLimbs], false)
// remainder is always range checked when we use it as a result of
// multiplication (and it needs to be strictly less than modulus). However,
// when we use the hint for equality assertion then we assume the result to
// be 0 which can be represented by 0 limbs.
if isMulMod {
rem = f.packLimbs(ret[nbQuoLimbs:nbQuoLimbs+nbRemLimbs], true)
} else {
rem = &Element[T]{}
}
// pack the carries into element. Used in the deferred multiplication check
// to align the limbs due to different overflows.
carries = f.newInternalElement(ret[nbQuoLimbs+nbRemLimbs:], 0)
return
}
func mulHint(field *big.Int, inputs, outputs []*big.Int) error {
nbBits := int(inputs[0].Int64())
nbLimbs := int(inputs[1].Int64())
nbALen := int(inputs[2].Int64())
nbQuoLen := int(inputs[3].Int64())
nbBLen := len(inputs) - 4 - nbLimbs - nbALen
ptr := 4
plimbs := inputs[ptr : ptr+nbLimbs]
ptr += nbLimbs
alimbs := inputs[ptr : ptr+nbALen]
ptr += nbALen
blimbs := inputs[ptr : ptr+nbBLen]
nbCarryLen := max(nbMultiplicationResLimbs(nbALen, nbBLen), nbMultiplicationResLimbs(nbQuoLen, nbLimbs)) - 1
outptr := 0
quoLimbs := outputs[outptr : outptr+nbQuoLen]
outptr += nbQuoLen
remLimbs := outputs[outptr : outptr+nbLimbs]
outptr += nbLimbs
carryLimbs := outputs[outptr : outptr+nbCarryLen]
p := new(big.Int)
a := new(big.Int)
b := new(big.Int)
if err := limbs.Recompose(plimbs, uint(nbBits), p); err != nil {
return fmt.Errorf("recompose p: %w", err)
}
if err := limbs.Recompose(alimbs, uint(nbBits), a); err != nil {
return fmt.Errorf("recompose a: %w", err)
}
if err := limbs.Recompose(blimbs, uint(nbBits), b); err != nil {
return fmt.Errorf("recompose b: %w", err)
}
quo := new(big.Int)
rem := new(big.Int)
ab := new(big.Int).Mul(a, b)
if p.Cmp(new(big.Int)) != 0 {
quo.QuoRem(ab, p, rem)
}
if err := limbs.Decompose(quo, uint(nbBits), quoLimbs); err != nil {
return fmt.Errorf("decompose quo: %w", err)
}
if err := limbs.Decompose(rem, uint(nbBits), remLimbs); err != nil {
return fmt.Errorf("decompose rem: %w", err)
}
xp := limbMul(alimbs, blimbs)
yp := limbMul(quoLimbs, plimbs)
carry := new(big.Int)
for i := range carryLimbs {
if i < len(xp) {
carry.Add(carry, xp[i])
}
if i < len(yp) {
carry.Sub(carry, yp[i])
}
carry.Rsh(carry, uint(nbBits))
carryLimbs[i] = new(big.Int).Set(carry)
}
return nil
}
// Mul computes a*b and reduces it modulo the field order. The returned Element
// has default number of limbs and zero overflow. If the result wouldn't fit
// into Element, then locally reduces the inputs first. Doesn't mutate inputs.
//
// For multiplying by a constant, use [Field[T].MulConst] method which is more
// efficient.
func (f *Field[T]) Mul(a, b *Element[T]) *Element[T] {
return f.reduceAndOp(func(a, b *Element[T], u uint) *Element[T] { return f.mulMod(a, b, u, nil) }, f.mulPreCond, a, b)
}
// MulMod computes a*b and reduces it modulo the field order. The returned Element
// has default number of limbs and zero overflow.
//
// Equivalent to [Field[T].Mul], kept for backwards compatibility.
func (f *Field[T]) MulMod(a, b *Element[T]) *Element[T] {
return f.reduceAndOp(func(a, b *Element[T], u uint) *Element[T] { return f.mulMod(a, b, u, nil) }, f.mulPreCond, a, b)
}
// MulConst multiplies a by a constant c and returns it. We assume that the
// input constant is "small", so that we can compute the product by multiplying
// all individual limbs with the constant. If it is not small, then use the
// general [Field[T].Mul] or [Field[T].MulMod] with creating new Element from
// the constant on-the-fly.
func (f *Field[T]) MulConst(a *Element[T], c *big.Int) *Element[T] {
switch c.Sign() {
case -1:
f.MulConst(f.Neg(a), new(big.Int).Neg(c))
case 0:
return f.Zero()
}
cbl := uint(c.BitLen())
if cbl > f.maxOverflow() {
panic(fmt.Sprintf("constant bit length %d exceeds max %d", cbl, f.maxOverflow()))
}
return f.reduceAndOp(
func(a, _ *Element[T], u uint) *Element[T] {
if ba, aConst := f.constantValue(a); aConst {
ba.Mul(ba, c)
return newConstElement[T](ba, false)
}
limbs := make([]frontend.Variable, len(a.Limbs))
for i := range a.Limbs {
limbs[i] = f.api.Mul(a.Limbs[i], c)
}
return f.newInternalElement(limbs, a.overflow+cbl)
},
func(a, _ *Element[T]) (nextOverflow uint, err error) {
nextOverflow = a.overflow + uint(cbl)
if nextOverflow > f.maxOverflow() {
err = overflowError{op: "mulConst", nextOverflow: nextOverflow, maxOverflow: f.maxOverflow()}
}
return
},
a, nil,
)
}
func (f *Field[T]) mulPreCond(a, b *Element[T]) (nextOverflow uint, err error) {
reduceRight := a.overflow < b.overflow
nbResLimbs := nbMultiplicationResLimbs(len(a.Limbs), len(b.Limbs))
nbLimbsOverflow := uint(1)
if nbResLimbs > 0 {
nbLimbsOverflow = uint(bits.Len(uint(nbResLimbs)))
}
nextOverflow = f.fParams.BitsPerLimb() + nbLimbsOverflow + a.overflow + b.overflow
if nextOverflow > f.maxOverflow() {
err = overflowError{op: "mul", nextOverflow: nextOverflow, maxOverflow: f.maxOverflow(), reduceRight: reduceRight}
}
return
}
// MulNoReduce computes a*b and returns the result without reducing it modulo
// the field order. The number of limbs of the returned element depends on the
// number of limbs of the inputs.
func (f *Field[T]) MulNoReduce(a, b *Element[T]) *Element[T] {
return f.reduceAndOp(f.mulNoReduce, f.mulPreCond, a, b)
}
func (f *Field[T]) mulNoReduce(a, b *Element[T], nextoverflow uint) *Element[T] {
resLimbs := make([]frontend.Variable, nbMultiplicationResLimbs(len(a.Limbs), len(b.Limbs)))
for i := range resLimbs {
resLimbs[i] = 0
}
for i := range a.Limbs {
for j := range b.Limbs {
resLimbs[i+j] = f.api.MulAcc(resLimbs[i+j], a.Limbs[i], b.Limbs[j])
}
}
return f.newInternalElement(resLimbs, nextoverflow)
}
// Exp computes base^exp modulo the field order. The returned Element has default
// number of limbs and zero overflow.
func (f *Field[T]) Exp(base, exp *Element[T]) *Element[T] {
expBts := f.ToBits(exp)
n := len(expBts)
res := f.Select(expBts[0], base, f.One())
base = f.Mul(base, base)
for i := 1; i < n-1; i++ {
res = f.Select(expBts[i], f.Mul(base, res), res)
base = f.Mul(base, base)
}
res = f.Select(expBts[n-1], f.Mul(base, res), res)
return res
}
// multivariate represents a multivariate polynomial. It is a list of terms
// where each term is a list of exponents for each variable. The coefficients
// are stored in the same order as the terms.
//
// For example, if there are two inputs x and y and we compute the polynomial
//
// x^2 + 2xy + y^2
//
// then we have the terms
//
// [[2, 0], [1, 1], [0, 2]]
//
// and coefficients
//
// [1, 1, 1].
//
// These definitions differ from how we expose the method in the [Field.Eval]
// method - there as we use pointers to the variables themselves, then we can
// allow to give the inputs directly a la
//
// f.Eval([][]*Element[T]{{x,x}, {x,y}, {y,y}}, []int{1, 1, 1}),
//
// but we cannot use the references inside the hint function as we work with
// solved values.
type multivariate[T FieldParams] struct {
Terms [][]int
Coefficients []int
}
// Eval evaluates the multivariate polynomial. The elements of the inner slices
// are multiplied together and then summed together with the corresponding
// coefficient.
//
// NB! This is experimental API. It does not support negative coefficients. It
// does not check that computing the term wouldn't overflow the field.
//
// For example, for computing the expression x^2 + 2xy + y^2 we would call
//
// f.Eval([][]*Element[T]{{x,x}, {x,y}, {y,y}}, []int{1, 2, 1})
//
// The method returns the result of the evaluation.
//
// To overcome the problem of not supporting negative coefficients, we can use a
// constant non-native element -1 as one of the inputs.
func (f *Field[T]) Eval(at [][]*Element[T], coefs []int) *Element[T] {
if len(at) != len(coefs) {
panic("terms and coefficients mismatch")
}
// it is the obvious case - when we don't have any inputs then we need to
// evaluate the zero polynomial which is always zero.
if len(at) == 0 {
return f.Zero()
}
// omit the negative coefficients for now. We don't support it for now.
for i := range coefs {
if coefs[i] < 0 {
panic("negative coefficient")
}
}
// initialize the multivariate struct from the inputs. The current method
// takes as input references to the elements. However, the hint function
// works with solved values. So it would be better to work with the exact
// exponents there.
// we detect all different elements in the inputs.
//
// it would be easier to use a map to store the elements and then use the
// map to get the inputs in the right order. However, for deterministic
// circuit compilation we need to use the same order of inputs. So we use
// slice instead.
var allElems []*Element[T]
for i := range at {
AT_INNER:
for j := range at[i] {
for k := range allElems {
if allElems[k] == at[i][j] {
continue AT_INNER
}
}
allElems = append(allElems, at[i][j])
}
}
// we already know all different inputs. We now count the number of
// occurrences in every term.
terms := make([][]int, 0, len(at))
for i := range at {
term := make([]int, len(allElems))
for j := range at[i] {
term[slices.Index(allElems, at[i][j])]++
}
terms = append(terms, term)
}
// ensure that all the elements have the range checks enforced on limbs.
// Necessary in case the input is a witness.
for i := range allElems {
f.enforceWidthConditional(allElems[i])
}
// multivariate is used for passing the terms and coefficients to the hint
// in a compact form.
mv := &multivariate[T]{
Terms: terms,
Coefficients: coefs,
}
// we call the hint to compute the result. The hint returns the reduced
// result, the quotient and the carries.
k, r, c, err := f.callPolyMvHint(mv, allElems)
if err != nil {
panic(err)
}
// finally, we store the deferred check which is performed later. The
// `mvCheck` implements the deferredChecker interface, so that we use the
// generic deferred check method.
mvc := mvCheck[T]{
f: f,
mv: mv,
vals: allElems,
r: r,
k: k,
c: c,
}
f.deferredChecks = append(f.deferredChecks, &mvc)
return r
}
// callPolyMvHint computes the multivariate evaluation given by mv at at. It
// returns the remainder (reduced result), the quotient and the carries. The
// computation is performed inside a hint, so it is the callers responsibility to
// perform the deferred multiplication check.
func (f *Field[T]) callPolyMvHint(mv *multivariate[T], at []*Element[T]) (quo, rem, carries *Element[T], err error) {
// first compute the length of the result so that we know how many bits we need for the quotient.
nbLimbs, nbBits := f.fParams.NbLimbs(), f.fParams.BitsPerLimb()
modBits := uint(f.fParams.Modulus().BitLen())
quoSize := f.polyMvEvalQuoSize(mv, at)
nbQuoLimbs := (uint(quoSize) - modBits + nbBits) / nbBits
nbRemLimbs := nbLimbs
nbCarryLimbs := nbMultiplicationResLimbs(int(nbQuoLimbs), int(nbLimbs)) - 1
nbHintInputs := 7 + len(at)*len(mv.Terms) + len(mv.Coefficients) + len(f.Modulus().Limbs)
for i := range at {
nbHintInputs += len(at[i].Limbs) + 1
}
hintInputs := make([]frontend.Variable, 0, nbHintInputs)
hintInputs = append(hintInputs, nbBits, nbLimbs, len(mv.Terms), len(at), nbQuoLimbs, nbRemLimbs, nbCarryLimbs)
// store the terms in the hint input. First the exponents
for i := range mv.Terms {
for j := range mv.Terms[i] {
hintInputs = append(hintInputs, mv.Terms[i][j])
}
}
// and now the coefficients
for i := range mv.Coefficients {
hintInputs = append(hintInputs, mv.Coefficients[i])
}
// finally, we store the modulus and all the inputs
hintInputs = append(hintInputs, f.Modulus().Limbs...)
for i := range at {
// keep in mind that not all inputs may be full length. We need to store
// the length also.
hintInputs = append(hintInputs, len(at[i].Limbs))
hintInputs = append(hintInputs, at[i].Limbs...)
}
ret, err := f.api.NewHint(polyMvHint, int(nbQuoLimbs)+int(nbRemLimbs)+int(nbCarryLimbs), hintInputs...)
if err != nil {
err = fmt.Errorf("call hint: %w", err)
return
}
quo = f.packLimbs(ret[:nbQuoLimbs], false)
rem = f.packLimbs(ret[nbQuoLimbs:nbQuoLimbs+nbRemLimbs], true)
carries = f.newInternalElement(ret[nbQuoLimbs+nbRemLimbs:], 0)
return quo, rem, carries, nil
}
// mvCheck is a deferred check for multivariate polynomial evaluation. It
// contains the multivariate polynomial, the values at which it is evaluated and
// the reduced result, quotient and carries. Implements deferredChecker and
// follows mulCheck implementation.
type mvCheck[T FieldParams] struct {
f *Field[T]
mv *multivariate[T]
vals []*Element[T]
r *Element[T] // reduced result
k *Element[T] // quotient
c *Element[T] // carry
}
func (mc *mvCheck[T]) toCommit() []frontend.Variable {
nbToCommit := len(mc.r.Limbs) + len(mc.k.Limbs) + len(mc.c.Limbs)
for j := range mc.vals {
nbToCommit += len(mc.vals[j].Limbs)
}
toCommit := make([]frontend.Variable, 0, nbToCommit)
toCommit = append(toCommit, mc.r.Limbs...)
toCommit = append(toCommit, mc.k.Limbs...)
toCommit = append(toCommit, mc.c.Limbs...)
for j := range mc.vals {
toCommit = append(toCommit, mc.vals[j].Limbs...)
}
return toCommit
}
func (mc *mvCheck[T]) maxLen() int {
maxLen := len(mc.r.Limbs)
maxLen = max(maxLen, len(mc.k.Limbs))
maxLen = max(maxLen, len(mc.c.Limbs))
for j := range mc.vals {
maxLen = max(maxLen, len(mc.vals[j].Limbs))
}
return maxLen
}
func (mc *mvCheck[T]) evalRound1(at []frontend.Variable) {
mc.c = mc.f.evalWithChallenge(mc.c, at)
mc.r = mc.f.evalWithChallenge(mc.r, at)
mc.k = mc.f.evalWithChallenge(mc.k, at)
}
func (mc *mvCheck[T]) evalRound2(at []frontend.Variable) {
for i := range mc.vals {
mc.vals[i] = mc.f.evalWithChallenge(mc.vals[i], at)
}
}
func (mc *mvCheck[T]) check(api frontend.API, peval, coef frontend.Variable) {
ls := frontend.Variable(0)
for i, term := range mc.mv.Terms {
termProd := frontend.Variable(mc.mv.Coefficients[i])
for i, pow := range term {
for j := 0; j < pow; j++ {
termProd = api.Mul(termProd, mc.vals[i].evaluation)
}
}
ls = api.Add(ls, termProd)
}
rs := api.Add(mc.r.evaluation, api.Mul(peval, mc.k.evaluation), api.Mul(mc.c.evaluation, coef))
api.AssertIsEqual(ls, rs)
}
func (mc *mvCheck[T]) cleanEvaluations() {
for i := range mc.vals {
mc.vals[i].evaluation = 0
mc.vals[i].isEvaluated = false
}
mc.r.evaluation = 0
mc.r.isEvaluated = false
mc.k.evaluation = 0
mc.k.isEvaluated = false
mc.c.evaluation = 0
mc.c.isEvaluated = false
}
// polyMvEvalQuoSize compute the length of the quotient in bits when evaluating
// the multivariate polynomial. The method is used to compute the number of bits
// required to represent the quotient in the hint function.
//
// As it only depends on the bit-length of the inputs, then we can precompute it
// regardless of the actual values.
func (f *Field[T]) polyMvEvalQuoSize(mv *multivariate[T], at []*Element[T]) (quoSize int) {
modBits := f.fParams.Modulus().BitLen()
quoSizes := make([]int, len(mv.Terms))
for i, term := range mv.Terms {
// for every term, the result length is the sum of the lengths of the
// variables and the coefficient.
var lengths []int
for j, pow := range term {
for k := 0; k < pow; k++ {
lengths = append(lengths, modBits+int(at[j].overflow))
}
}
lengths = append(lengths, bits.Len(uint(mv.Coefficients[i])))
quoSizes[i] = sum(lengths...)
}
// and for the full result, it is maximum of the inputs. We also add a bit
// for every term for overflow.
quoSize = max(quoSizes...) + len(quoSizes)
return quoSize
}
// polyMvHint computes the multivariate evaluation as a hint. Should not be
// called directly, but rather through [Field.callPolyMvHint] method which
// handles the input packing and output unpacking.
func polyMvHint(mod *big.Int, inputs, outputs []*big.Int) error {
if len(inputs) < 7 {
return fmt.Errorf("not enough inputs")
}
var (
nbBits = int(inputs[0].Int64())
nbLimbs = int(inputs[1].Int64())
nbTerms = int(inputs[2].Int64())
nbVars = int(inputs[3].Int64())
nbQuoLimbs = int(inputs[4].Int64())
nbRemLimbs = int(inputs[5].Int64())
nbCarryLimbs = int(inputs[6].Int64())
)
if len(outputs) != nbQuoLimbs+nbRemLimbs+nbCarryLimbs {
return fmt.Errorf("output length mismatch")
}
outPtr := 0
quoLimbs := outputs[outPtr : outPtr+nbQuoLimbs]
outPtr += nbQuoLimbs
remLimbs := outputs[outPtr : outPtr+nbRemLimbs]
outPtr += nbRemLimbs
carryLimbs := outputs[outPtr : outPtr+nbCarryLimbs]
terms := make([][]int, nbTerms)
ptr := 7
// read the terms
for i := range terms {
terms[i] = make([]int, nbVars)
for j := range terms[i] {
terms[i][j] = int(inputs[ptr].Int64())
ptr++
}
}
// read the coefficients
coeffs := make([]*big.Int, nbTerms)
for i := range coeffs {
coeffs[i] = inputs[ptr]
ptr++
}
// read the modulus
plimbs := inputs[ptr : ptr+nbLimbs]
ptr += nbLimbs
p := new(big.Int)
if err := limbs.Recompose(plimbs, uint(nbBits), p); err != nil {
return fmt.Errorf("recompose p: %w", err)
}
// read the inputs
varsLimbs := make([][]*big.Int, nbVars)
for i := range varsLimbs {
varsLimbs[i] = make([]*big.Int, int(inputs[ptr].Int64()))
ptr++
for j := range varsLimbs[i] {
varsLimbs[i][j] = inputs[ptr]
ptr++
}
}
if ptr != len(inputs) {
return fmt.Errorf("inputs not exhausted")
}
// recompose the inputs in limb-form to *big.Int form
vars := make([]*big.Int, nbVars)
for i := range vars {
vars[i] = new(big.Int)
if err := limbs.Recompose(varsLimbs[i], uint(nbBits), vars[i]); err != nil {
return fmt.Errorf("recompose vars[%d]: %w", i, err)
}
}
// compute the result on full inputs
fullLhs := new(big.Int)
for i, term := range terms {
termRes := new(big.Int).Set(coeffs[i])
for i, pow := range term {
for j := 0; j < pow; j++ {
termRes.Mul(termRes, vars[i])
}
}
fullLhs.Add(fullLhs, termRes)
}
// compute the result as r + k*p for now
var (
quo = new(big.Int)
rem = new(big.Int)
)
if p.Cmp(new(big.Int)) != 0 {
quo.QuoRem(fullLhs, p, rem)
}
// write the remainder and quotient to output
if err := limbs.Decompose(quo, uint(nbBits), quoLimbs); err != nil {
return fmt.Errorf("decompose quo: %w", err)
}
if err := limbs.Decompose(rem, uint(nbBits), remLimbs); err != nil {
return fmt.Errorf("decompose rem: %w", err)
}
// compute the result on limbs
tmp := new(big.Int)
var lhs []*big.Int
for i, term := range terms {
// collect the variables to be multiplied together
var termVarLimbs [][]*big.Int
for i, pow := range term {
for j := 0; j < pow; j++ {
termVarLimbs = append(termVarLimbs, varsLimbs[i])
}
}
if len(termVarLimbs) == 0 {
continue
}
termRes := []*big.Int{new(big.Int).Set(coeffs[i])}
// perform limbwise multiplication
for _, toMul := range termVarLimbs {
termRes = limbMul(termRes, toMul)
}
// add current term to the result. Increase the length of necessary when
// required.
for i := len(lhs); i < len(termRes); i++ {
lhs = append(lhs, new(big.Int))
}
for i := range termRes {
lhs[i].Add(lhs[i], termRes[i])
}
}
// compute the result as r + k*p on limbs
rhs := make([]*big.Int, nbMultiplicationResLimbs(nbQuoLimbs, nbLimbs))
for i := range rhs {
rhs[i] = new(big.Int)
}
for i := 0; i < nbLimbs; i++ {
rhs[i].Add(rhs[i], remLimbs[i])
for j := 0; j < nbQuoLimbs; j++ {
tmp.Mul(quoLimbs[j], plimbs[i])
rhs[i+j].Add(rhs[i+j], tmp)
}
}
// compute the carries
carry := new(big.Int)
for i := range carryLimbs {
if i < len(lhs) {
carry.Add(carry, lhs[i])
}
if i < len(rhs) {
carry.Sub(carry, rhs[i])
}
carry.Rsh(carry, uint(nbBits))
carryLimbs[i] = new(big.Int).Set(carry)
}
return nil
}