-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_event_loader.py
440 lines (348 loc) · 16.3 KB
/
video_event_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
from __future__ import print_function, absolute_import
import os
from PIL import Image
import numpy as np
import functools
from torchvision import transforms as T
import transforms as T
import sys
import torch
from torch import Tensor
from torch.utils.data import Dataset
import random
import torchvision.utils as vutil
import scipy.io as scio
# print(1)
# sys.setrecursionlimit(1000000000)
def read_image(img_path):
"""Keep reading image until succeed.
This can avoid IOError incurred by heavy IO process."""
got_img = False
while not got_img:
try:
img = Image.open(img_path).convert('RGB')
got_img = True
except IOError:
print("IOError incurred when reading '{}'. Will redo. Don't worry. Just chill.".format(img_path))
pass
return img
###############################################################################
###############################################################################
def read_mat(img_path):
"""Keep reading image until succeed.
This can avoid IOError incurred by heavy IO process."""
got_img = False
while not got_img:
try:
event_sequence = scio.loadmat(img_path)
start_time=event_sequence['start_timestamp']
end_time= np.array(event_sequence['section_event_timestamp'][-1][-1])
end_time = np.expand_dims(end_time,axis=0)
end_time = np.expand_dims(end_time,axis=0)
event_time=event_sequence['section_event_timestamp']
event_polar=event_sequence['section_event_polarity']
event_y=event_sequence['section_event_y']
event_x=event_sequence['section_event_x']
# event_frame = np.zeros([3,128,64],int)
event_frame = np.zeros([3,256,128],int)
total_time = end_time - start_time
time_crop = total_time // 3 + 1
time_init_num = 1
for event_i in range(0,event_time.shape[1]):
if event_time[0,event_i] < time_crop*time_init_num + start_time:
if event_polar[0,event_i]>0:
event_frame[int(time_init_num-1),event_y[0,event_i]-1,event_x[0,event_i]-1] = event_frame[int(time_init_num-1),event_y[0,event_i]-1,event_x[0,event_i]-1]+1
else:
event_frame[int(time_init_num-1),event_y[0,event_i]-1,event_x[0,event_i]-1] = event_frame[int(time_init_num-1),event_y[0,event_i]-1,event_x[0,event_i]-1]-1
else:
time_init_num = time_init_num + 1
event_array=np.array(event_frame).astype(np.float32) # [3,128,64]
event_array = event_array.transpose((2,1,0))
img_PIL = Image.fromarray(np.uint8(event_array))
got_img = True
except IOError:
print("IOError incurred when reading '{}'. Will redo. Don't worry. Just chill.".format(img_path))
pass
return img_PIL
###############################################################################
###############################################################################
def get_default_video_loader():
image_loader = get_default_image_loader()
return functools.partial(video_loader, image_loader=image_loader)
####################################################################################
####################################################################################
####################################################################################
def get_default_event_list_loader():
image_loader = get_default_event_loader()
return functools.partial(video_loader, image_loader=image_loader)
def get_default_event_loader():
return event_loader
def event_loader(img_path):
"""Keep reading image until succeed.
This can avoid IOError incurred by heavy IO process."""
event_sequence = scio.loadmat(img_path)
start_time=event_sequence['start_timestamp']
end_time= np.array(event_sequence['section_event_timestamp'][-1][-1])
end_time = np.expand_dims(end_time,axis=0)
end_time = np.expand_dims(end_time,axis=0)
event_time=event_sequence['section_event_timestamp']
event_polar=event_sequence['section_event_polarity']
event_y=event_sequence['section_event_y']
event_x=event_sequence['section_event_x']
event_frame = np.zeros([3,128,64],int)
total_time = end_time - start_time
time_crop = total_time // 3 + 1
time_init_num = 1
for event_i in range(0,event_time.shape[1]):
if event_time[0,event_i] < time_crop*time_init_num + start_time:
if event_polar[0,event_i]>0:
event_frame[int(time_init_num-1),event_y[0,event_i]-1,event_x[0,event_i]-1] = event_frame[int(time_init_num-1),event_y[0,event_i]-1,event_x[0,event_i]-1]+1
else:
event_frame[int(time_init_num-1),event_y[0,event_i]-1,event_x[0,event_i]-1] = event_frame[int(time_init_num-1),event_y[0,event_i]-1,event_x[0,event_i]-1]-1
else:
time_init_num = time_init_num + 1
event_array=np.array(event_frame).astype(np.float32) # [3,128,64]
event_array = event_array.transpose((2,1,0))
img_PIL = Image.fromarray(np.uint8(event_array))
return img_PIL
####################################################################################
####################################################################################
####################################################################################
def get_default_image_loader():
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader
else:
return pil_loader
def video_loader(img_paths, image_loader):
video = []
for image_path in img_paths:
if os.path.exists(image_path):
video.append(image_loader(image_path))
else:
return video
return video
def imge_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
def accimage_loader(path):
try:
import accimage
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def pil_loader(path):
with open(path,'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def produce_out(imgs_path,seq_len, stride):
img_len = len(imgs_path)
frame_indices = list(range(img_len))
rand_end = max(0, img_len - seq_len * stride -1)
begin_index = random.randint(0, rand_end)
end_index = min(begin_index + seq_len * stride, img_len)
indices = frame_indices[begin_index:end_index]
re_indices= []
for i in range(0, seq_len * stride, stride):
add_arg = random.randint(0, stride-1)
re_indices.append(indices[i + add_arg])
re_indices = np.array(re_indices)
out = []
for index in re_indices:
out.append(imgs_path[int(index)])
return out
#################################################################################
#################################################################################
class Video_Event_Dataset(Dataset):
"""Video Person ReID Dataset.
Note batch data has shape (batch, seq_len, channel, height, width).
"""
sample_methods = ['evenly', 'random', 'all']
def __init__(self, dataset,dataset_event, seq_len=15, sample='evenly',
transform=None, max_seq_len=200, dataset_name="mars",
get_loader = get_default_video_loader,
):
self.dataset = dataset
self.dataset_event = dataset_event
self.seq_len = seq_len
self.sample = sample
self.transform = transform
self.max_seq_len = max_seq_len
self.dataset_name = dataset_name
self.loader = get_loader()
self.loader_event = get_default_event_list_loader()
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
img_paths, pid, camid = self.dataset[index]
event_paths, _, _ = self.dataset_event[index]
num = len(img_paths)
if self.sample == 'dense':
"""
Sample all frames in a video into a list of clips, each clip contains seq_len frames, batch_size needs to be set to 1.
This sampling strategy is used in test phase.
"""
frame_indices = list(range(num))
interval = num // self.seq_len
indices_list=[]
if num > self.seq_len:
for index in range(interval):
indices_list.append(frame_indices[index : index+interval * self.seq_len : interval])
else:
last_seq = frame_indices[0:]
for index in last_seq:
if len(last_seq) >= self.seq_len:
break
last_seq.append(index)
indices_list.append(last_seq)
imgs_list=[]
events_list = []
for indices in indices_list:
imgs = []
events = []
for index in indices:
index=int(index)
img_path = img_paths[index]
event_path = event_paths[index]
img = read_image(img_path)
_event = read_mat(event_path)
if self.transform is not None:
img = self.transform(img)
_event = self.transform(_event)
_event = _event.unsqueeze(0)
img = img.unsqueeze(0)
events.append(_event)
imgs.append(img)
imgs = torch.cat(imgs, dim=0)
imgs_list.append(imgs)
events = torch.cat(events, dim=0)
events_list.append(imgs)
if len(imgs_list) > self.max_seq_len:
sp = int(random.random() * (len(imgs_list) - self.max_seq_len))
ep = sp + self.max_seq_len
imgs_list = imgs_list[sp:ep]
imgs_array = torch.stack(imgs_list)
if len(events_list) > self.max_seq_len:
sp = int(random.random() * (len(events_list) - self.max_seq_len))
ep = sp + self.max_seq_len
events_list = events_list[sp:ep]
events_array = torch.stack(events_list)
# print('imgs_array=',imgs_array.shape)
# print('events_array=',events_array.shape)
imgs_array = torch.cat((imgs_array,events_array),0)
return imgs_array, pid, camid, img_paths[0]
#################################################################################
#################################################################################
elif self.sample == 'Begin_interval':
event_paths = list(event_paths)
img_paths = list(img_paths)
interval = self.seq_len
num = self.seq_len - 1
# event
if len(event_paths) >= interval * num + 1:
end_index = interval * num + 1
out = event_paths[0:end_index:interval]
elif len(event_paths) >= int(interval/2) * num + 1:
end_index = int(interval/2) * num + 1
out = event_paths[0:end_index:int(interval/2)]
elif len(event_paths) >= int(interval/4) * num + 1:
end_index = int(interval/4) * num + 1
out = event_paths[0:end_index:int(interval/4)]
elif len(event_paths) >= int(interval/8) * num + 1:
end_index = int(interval/8) * num + 1
out = event_paths[0:end_index:int(interval/8)]
else:
out = event_paths[0:interval]
while len(out) < interval:
for index in out:
if len(out) >= interval:
break
out.append(index)
clip_event = self.loader_event(out)
if self.transform is not None:
clip_event = [self.transform(img) for img in clip_event]
clip_event = torch.stack(clip_event, 0)
##########################################################################################
##########################################################################################
##########################################################################################
# img
if len(img_paths) >= interval * num + 1:
end_index = interval * num + 1
out = img_paths[0:end_index:interval]
elif len(img_paths) >= int(interval/2) * num + 1:
end_index = int(interval/2) * num + 1
out = img_paths[0:end_index:int(interval/2)]
elif len(img_paths) >= int(interval/4) * num + 1:
end_index = int(interval/4) * num + 1
out = img_paths[0:end_index:int(interval/4)]
elif len(img_paths) >= int(interval/8) * num + 1:
end_index = int(interval/8) * num + 1
out = img_paths[0:end_index:int(interval/8)]
else:
out = img_paths[0:interval]
while len(out) < interval:
for index in out:
if len(out) >= interval:
break
out.append(index)
clip = self.loader(out)
if self.transform is not None:
clip = [self.transform(img) for img in clip]
clip = torch.stack(clip, 0)
clip = torch.cat((clip,clip_event),0)
return clip, pid, camid, out
#################################################################################
#################################################################################
elif self.sample == 'Random_interval':
# img
img_paths = list(img_paths)
stride = 8
if len(img_paths) >= self.seq_len * stride :
new_stride = stride
out = produce_out(img_paths, self.seq_len, new_stride)
elif len(img_paths) >= self.seq_len * int(stride/2):
new_stride = int(stride/2)
out = produce_out(img_paths, self.seq_len, new_stride)
elif len(img_paths) >= self.seq_len * int(stride/4):
new_stride = int(stride/4)
out = produce_out(img_paths, self.seq_len, new_stride)
elif len(img_paths) >= self.seq_len * int(stride/8):
new_stride = int(stride/8)
out = produce_out(img_paths, self.seq_len, new_stride)
else:
index = np.random.choice(len(img_paths), size=self.seq_len,replace=True)
index.sort()
out = [img_paths[index[i]] for i in range(self.seq_len)]
clip = self.loader(out)
clip = self.transform(clip)
clip = torch.stack(clip, 0)
# events
event_paths = list(event_paths)
stride = 8
if len(event_paths) >= self.seq_len * stride :
new_stride = stride
out = produce_out(event_paths, self.seq_len, new_stride)
elif len(event_paths) >= self.seq_len * int(stride/2):
new_stride = int(stride/2)
out = produce_out(event_paths, self.seq_len, new_stride)
elif len(event_paths) >= self.seq_len * int(stride/4):
new_stride = int(stride/4)
out = produce_out(event_paths, self.seq_len, new_stride)
elif len(event_paths) >= self.seq_len * int(stride/8):
new_stride = int(stride/8)
out = produce_out(event_paths, self.seq_len, new_stride)
else:
index = np.random.choice(len(event_paths), size=self.seq_len,replace=True)
index.sort()
out = [event_paths[index[i]] for i in range(self.seq_len)]
clip_event = self.loader_event(out)
clip_event = self.transform(clip_event)
clip_event = torch.stack(clip_event, 0)
clip = torch.cat((clip,clip_event),0)
return clip, pid, camid, out
else:
raise KeyError("Unknown sample method: {}. Expected one of {}".format(self.sample, self.sample_methods))