-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_STB.py
197 lines (168 loc) · 7.49 KB
/
train_STB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--OMP_NUM_THREADS', type=int, default=1)
temp_args, _ = parser.parse_known_args()
os.environ["OMP_NUM_THREADS"] = str(temp_args.OMP_NUM_THREADS)
import random
import torch
torch.set_num_threads(1)
import yaml
import hyperpyyaml
import numpy as np
import pytorch_lightning as pl
from functools import partial
from collections import defaultdict
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from nnet.model.offl_tfm_enc_lstm_enc_dec import TransformerEDADiarization
from utlis.scheduler import NoamScheduler
from datasets.diarization_dataset import KaldiDiarizationDataset, my_collate
from train.tfm_STB import SpeakerDiarization
import warnings
warnings.filterwarnings("ignore")
def train(configs, gpus, checkpoint_resume, test_folder=None):
train_set = KaldiDiarizationDataset(
data_dir=configs["data"]["train_data_dir"],
chunk_size=configs["data"]["chunk_size"],
context_size=configs["data"]["context_recp"],
input_transform=configs["data"]["feat_type"],
frame_size=configs["data"]["feat"]["win_length"],
frame_shift=configs["data"]["feat"]["hop_length"],
subsampling=configs["data"]["subsampling"],
rate=configs["data"]["feat"]["sample_rate"],
label_delay=configs["data"]["label_delay"],
n_speakers=configs["data"]["num_speakers"],
use_last_samples=configs["data"]["use_last_samples"],
shuffle=configs["data"]["shuffle"])
val_set = KaldiDiarizationDataset(
data_dir=configs["data"]["val_data_dir"],
chunk_size=configs["data"]["chunk_size"],
context_size=configs["data"]["context_recp"],
input_transform=configs["data"]["feat_type"],
frame_size=configs["data"]["feat"]["win_length"],
frame_shift=configs["data"]["feat"]["hop_length"],
subsampling=configs["data"]["subsampling"],
rate=configs["data"]["feat"]["sample_rate"],
label_delay=configs["data"]["label_delay"],
n_speakers=configs["data"]["num_speakers"],
use_last_samples=configs["data"]["use_last_samples"],
shuffle=configs["data"]["shuffle"])
datasets = {
"train": train_set,
"val": val_set
}
collate_func = my_collate
# Define model
model = TransformerEDADiarization(
n_speakers=configs["data"]["num_speakers"],
in_size=(2 * configs["data"]["context_recp"] + 1) * configs["data"]["feat"]["n_mels"], # Transformer need to know maximum data length
**configs["model"]["params"],
)
# Define optimizer
opt_config = {
"params": model.parameters(),
"lr": configs["training"]["lr"]
}
opt_name = configs["training"]["opt"].lower()
if opt_name == "adam":
opt = torch.optim.Adam
elif opt_name == "sgd":
opt = torch.optim.SGD
elif opt_name == "noam":
opt = partial(
torch.optim.Adam,
betas=(0.9, 0.98),
eps=1e-9
)
else:
NotImplementedError
opt = opt(**opt_config)
if configs["training"]["scheduler"]:
print("Using noam scheduler")
scheduler = NoamScheduler(opt, configs["model"]["params"]["n_units"], configs["training"]["warm_steps"], scale=configs["training"]["schedule_scale"]) if configs["training"]["scheduler"].lower() == "noam" else NotImplementedError
else:
scheduler = None
# Define the logger
logger = TensorBoardLogger(os.path.dirname(configs["log"]["log_dir"]), configs["log"]["model_name"])
configs["log"]["log_dir"] = logger.log_dir # updarte log_dir to: ./logs/model_xx/version_xx
print("Experiment dir:", configs["log"]["log_dir"])
os.makedirs(configs["log"]["log_dir"], exist_ok=True)
with open(configs["log"]["log_dir"] + "/config.yaml", "w") as f:
docs = yaml.dump(configs, f)
f.close()
callbacks = [
EarlyStopping(monitor="val/obj_metric", patience=configs["training"]["early_stop_epoch"], verbose=True, mode="min"),
ModelCheckpoint(logger.log_dir, monitor="val/obj_metric", save_top_k=configs["log"]["save_top_k"], mode="min", every_n_epochs=1 ,save_last=True)
]
# Define the training setup
spk_dia_main = SpeakerDiarization(
hparams=configs,
model=model,
datasets=datasets,
opt=opt,
scheduler=scheduler,
collate_func=collate_func
)
# Initialization
if configs["training"]["init_ckpt"]:
print("Load from checkpoint {} ... ".format(configs["training"]["init_ckpt"]))
ckpt_package = torch.load(configs["training"]["init_ckpt"])
# model_dict = ckpt_package["model"]
spk_dia_main.load_state_dict(ckpt_package)
# Define the trainer
trainer = pl.Trainer(
max_epochs=configs["training"]["max_epochs"],
callbacks=callbacks,
gpus=gpus,
strategy=configs["training"]["dist_strategy"],
accumulate_grad_batches=configs["training"]["grad_accm"],
logger=logger,
resume_from_checkpoint=checkpoint_resume,
gradient_clip_val=configs["training"]["grad_clip"],
check_val_every_n_epoch=configs["training"]["val_interval"],
**configs["debug"]
)
if test_folder is None:
# Start training
trainer.fit(spk_dia_main)
best_path = trainer.checkpoint_callback.best_model_path
print("Best model path:", best_path)
test_folder = os.path.dirname(best_path)
# Test step: given the folder and average the models in the given folder
for _, _, files in os.walk(test_folder):
all_files = files
# ckpts = [x for x in all_files if (".ckpt" in x) and ("epoch" in x)]
ckpts = [x for x in all_files if (".ckpt" in x) and ("epoch" in x) and int(x.split("=")[1].split("-")[0])>=configs["log"]["start_epoch"] and int(x.split("=")[1].split("-")[0])<=configs["log"]["end_epoch"]]
print("Test using ckpts:")
[print(test_folder + "/" + x) for x in ckpts]
test_state = defaultdict(float)
for c in ckpts:
state_dict = torch.load(test_folder + "/" + c)["state_dict"]
for name, param in state_dict.items():
test_state[name] += param / len(ckpts)
if configs["log"]["save_avg_path"]:
torch.save(test_state, configs["log"]["save_avg_path"])
spk_dia_main.load_state_dict(test_state)
trainer.test(spk_dia_main)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--configs', help='Configuration file path', required=True)
parser.add_argument('--gpus', default=None, help='Device used for training')
parser.add_argument("--checkpoint_resume", default=None, help="Checkpoint path to resume training")
parser.add_argument("--test_from_folder", default=None, help="Checkpoint path to test training")
setup = parser.parse_args()
with open(setup.configs, "r") as f:
configs = hyperpyyaml.load_hyperpyyaml(f)
f.close()
# Freeze seed
seed = configs["training"]["seed"]
if seed:
torch.random.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
pl.seed_everything(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
train(configs, gpus=setup.gpus, checkpoint_resume=setup.checkpoint_resume, test_folder=setup.test_from_folder)