-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathCapstoneDisassembler.cs
895 lines (823 loc) · 38.1 KB
/
CapstoneDisassembler.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
using Gee.External.Capstone.Arm;
using Gee.External.Capstone.Arm64;
using Gee.External.Capstone.X86;
using System;
using System.Collections.Generic;
using System.Linq;
namespace Gee.External.Capstone {
/// <summary>
/// Capstone Disassembler.
/// </summary>
public abstract class CapstoneDisassembler : IDisposable {
/// <summary>
/// Determine if the ARM64 Architecture is Supported.
/// </summary>
/// <value>
/// A boolean true if the ARM64 architecture is supported. A boolean false otherwise.
/// </value>
public static bool IsArm64Supported {
get {
var value = NativeCapstone.Query(NativeQueryOption.QueryArm64Architecture);
return value;
}
}
/// <summary>
/// Determine if the ARM Architecture is Supported.
/// </summary>
/// <value>
/// A boolean true if the ARM architecture is supported. A boolean false otherwise.
/// </value>
public static bool IsArmSupported {
get {
var value = NativeCapstone.Query(NativeQueryOption.QueryArmArchitecture);
return value;
}
}
/// <summary>
/// Determine if Diet Mode is Enabled.
/// </summary>
/// <value>
/// A boolean true if diet mode is enabled. A boolean false otherwise.
/// </value>
public static bool IsDietModeEnabled {
get {
var value = NativeCapstone.Query(NativeQueryOption.QueryDietMode);
return value;
}
}
/// <summary>
/// Determine if the Ethereum EVM Architecture is Supported.
/// </summary>
/// <value>
/// A boolean true if the Ethereum EVM architecture is supported. A boolean false otherwise.
/// </value>
public static bool IsEvmSupported {
get {
var value = NativeCapstone.Query(NativeQueryOption.QueryEvmArchitecture);
return value;
}
}
/// <summary>
/// Determine if the M680X Architecture is Supported.
/// </summary>
/// <value>
/// A boolean true if the M680X architecture is supported. A boolean false otherwise.
/// </value>
public static bool IsM680XSupported {
get {
var value = NativeCapstone.Query(NativeQueryOption.QueryM680XArchitecture);
return value;
}
}
/// <summary>
/// Determine if the M68K Architecture is Supported.
/// </summary>
/// <value>
/// A boolean true if the M68K architecture is supported. A boolean false otherwise.
/// </value>
public static bool IsM68KSupported {
get {
var value = NativeCapstone.Query(NativeQueryOption.QueryM68KArchitecture);
return value;
}
}
/// <summary>
/// Determine if the MIPS Architecture is Supported.
/// </summary>
/// <value>
/// A boolean true if the MIPS architecture is supported. A boolean false otherwise.
/// </value>
public static bool IsMipsSupported {
get {
var value = NativeCapstone.Query(NativeQueryOption.QueryMipsArchitecture);
return value;
}
}
/// <summary>
/// Determine if the PowerPC Architecture is Supported.
/// </summary>
/// <value>
/// A boolean true if the PowerPC architecture is supported. A boolean false otherwise.
/// </value>
public static bool IsPowerPcSupported {
get {
var value = NativeCapstone.Query(NativeQueryOption.QueryPowerPcArchitecture);
return value;
}
}
/// <summary>
/// Determine if the SPARC Architecture is Supported.
/// </summary>
/// <value>
/// A boolean true if the SPARC architecture is supported. A boolean false otherwise.
/// </value>
public static bool IsSparcSupported {
get {
var value = NativeCapstone.Query(NativeQueryOption.QuerySparcArchitecture);
return value;
}
}
/// <summary>
/// Determine if the SystemZ Architecture is Supported.
/// </summary>
/// <value>
/// A boolean true if the SystemZ architecture is supported. A boolean false otherwise.
/// </value>
public static bool IsSystemZSupported {
get {
var value = NativeCapstone.Query(NativeQueryOption.QuerySystemZArchitecture);
return value;
}
}
/// <summary>
/// Determine if the Tms320C64X Architecture is Supported.
/// </summary>
/// <value>
/// A boolean true if the Tms320C64X architecture is supported. A boolean false otherwise.
/// </value>
public static bool IsTms320C64XSupported {
get {
var value = NativeCapstone.Query(NativeQueryOption.QueryTms320C64XArchitecture);
return value;
}
}
/// <summary>
/// Determine if X86 Reduce Mode is Enabled.
/// </summary>
/// <value>
/// A boolean true if X86 reduce mode is enabled. A boolean false otherwise.
/// </value>
public static bool IsX86ReduceModeEnabled {
get {
var value = NativeCapstone.Query(NativeQueryOption.QueryX86ReduceMode);
return value;
}
}
/// <summary>
/// Determine if the X86 Architecture is Supported.
/// </summary>
/// <value>
/// A boolean true if the X86 architecture is supported. A boolean false otherwise.
/// </value>
public static bool IsX86Supported {
get {
var value = NativeCapstone.Query(NativeQueryOption.QueryX86Architecture);
return value;
}
}
/// <summary>
/// Determine if the XCore Architecture is Supported.
/// </summary>
/// <value>
/// A boolean true if the XCore architecture is supported. A boolean false otherwise.
/// </value>
public static bool IsXCoreSupported {
get {
var value = NativeCapstone.Query(NativeQueryOption.QueryXCoreArchitecture);
return value;
}
}
/// <summary>
/// Get Disassemble Architecture.
/// </summary>
public abstract DisassembleArchitecture DisassembleArchitecture { get; }
/// <summary>
/// Enable or Disable Instruction Details.
/// </summary>
/// <exception cref="Gee.External.Capstone.CapstoneException">
/// Thrown if the instruction details option could not be set.
/// </exception>
public abstract bool EnableInstructionDetails { get; set; }
/// <summary>
/// Enable or Disable Skip Data Mode.
/// </summary>
/// <exception cref="Gee.External.Capstone.CapstoneException">
/// Thrown if the Skip Data Mode option could not be set.
/// </exception>
public abstract bool EnableSkipDataMode { get; set; }
/// <summary>
/// Get Disassembler's Handle.
/// </summary>
internal abstract NativeDisassemblerHandle Handle { get; }
/// <summary>
/// Get and Set Invalid Instruction Mnemonic.
/// </summary>
public abstract string InvalidInstructionMnemonic { get; set; }
/// <summary>
/// Create an ARM64 Disassembler.
/// </summary>
/// <param name="disassembleMode">
/// The hardware mode for the disassembler to use.
/// </param>
/// <returns>
/// A ARM disassembler.
/// </returns>
/// <exception cref="Gee.External.Capstone.CapstoneException">
/// Thrown if a disassembler could not be created.
/// </exception>
/// <exception cref="System.ArgumentException">
/// Thrown if the disassemble mode is invalid or unsupported by the disassemble architecture.
/// </exception>
/// <exception cref="System.OutOfMemoryException">
/// Thrown if sufficient memory cannot be allocated to perform the operation as a rare indication that the
/// system is under heavy load.
/// </exception>
public static CapstoneArm64Disassembler CreateArm64Disassembler(Arm64DisassembleMode disassembleMode) {
var disassembler = new CapstoneArm64Disassembler(disassembleMode);
return disassembler;
}
/// <summary>
/// Create an ARM Disassembler.
/// </summary>
/// <param name="disassembleMode">
/// The hardware mode for the disassembler to use.
/// </param>
/// <returns>
/// A ARM disassembler.
/// </returns>
/// <exception cref="Gee.External.Capstone.CapstoneException">
/// Thrown if a disassembler could not be created.
/// </exception>
/// <exception cref="System.ArgumentException">
/// Thrown if the disassemble mode is invalid or unsupported by the disassemble architecture.
/// </exception>
/// <exception cref="System.OutOfMemoryException">
/// Thrown if sufficient memory cannot be allocated to perform the operation as a rare indication that the
/// system is under heavy load.
/// </exception>
public static CapstoneArmDisassembler CreateArmDisassembler(ArmDisassembleMode disassembleMode) {
var disassembler = new CapstoneArmDisassembler(disassembleMode);
return disassembler;
}
/// <summary>
/// Create an X86 Disassembler.
/// </summary>
/// <param name="disassembleMode">
/// The hardware mode for the disassembler to use.
/// </param>
/// <returns>
/// An X86 disassembler.
/// </returns>
/// <exception cref="Gee.External.Capstone.CapstoneException">
/// Thrown if a disassembler could not be created.
/// </exception>
/// <exception cref="System.ArgumentException">
/// Thrown if the disassemble mode is invalid or unsupported by the disassemble architecture.
/// </exception>
/// <exception cref="System.OutOfMemoryException">
/// Thrown if sufficient memory cannot be allocated to perform the operation as a rare indication that the
/// system is under heavy load.
/// </exception>
public static CapstoneX86Disassembler CreateX86Disassembler(X86DisassembleMode disassembleMode) {
var disassembler = new CapstoneX86Disassembler(disassembleMode);
return disassembler;
}
/// <summary>
/// Throw an Exception if Diet Mode is Enabled.
/// </summary>
/// <exception cref="System.NotSupportedException">
/// Thrown if diet mode is enabled.
/// </exception>
internal static void ThrowIfDietModeIsEnabled() {
if (CapstoneDisassembler.IsDietModeEnabled) {
const string detailMessage = "An operation is not supported when diet mode is enabled.";
throw new NotSupportedException(detailMessage);
}
}
/// <summary>
/// Throw an Exception if a Value is a Null Reference.
/// </summary>
/// <typeparam name="T">
/// The type of the value.
/// </typeparam>
/// <param name="name">
/// The name of the parameter the value was passed as an argument to.
/// </param>
/// <param name="value">
/// The value.
/// </param>
/// <exception cref="System.ArgumentNullException">
/// Thrown if the value is a null reference.
/// </exception>
internal static void ThrowIfValueIsNullReference<T>(string name, T value) where T : class {
if (value == null) {
const string detailMessage = "A value cannot be a null reference.";
throw new ArgumentNullException(name, detailMessage);
}
}
/// <summary>
/// Dispose Object.
/// </summary>
public abstract void Dispose();
}
/// <summary>
/// Capstone Disassembler.
/// </summary>
/// <typeparam name="TDisassembleMode">
/// The type of the hardware mode for the disassembler to use.
/// </typeparam>
/// <typeparam name="TInstruction">
/// The type of the disassembled instructions.
/// </typeparam>
/// <typeparam name="TInstructionDetail">
/// The type of the instructions' details.
/// </typeparam>
/// <typeparam name="TInstructionGroup">
/// The type of the instructions' architecture specific instruction groups.
/// </typeparam>
/// <typeparam name="TInstructionGroupId">
/// The type of the instructions' architecture specific instruction group unique identifiers.
/// </typeparam>
/// <typeparam name="TInstructionId">
/// The type of the instructions' unique identifiers.
/// </typeparam>
/// <typeparam name="TRegister">
/// The type of the instructions' architecture specific registers.
/// </typeparam>
/// <typeparam name="TRegisterId">
/// The type of the instructions' architecture specific register unique identifiers.
/// </typeparam>
public abstract class CapstoneDisassembler<TDisassembleMode, TInstruction, TInstructionDetail, TInstructionGroup, TInstructionGroupId, TInstructionId, TRegister, TRegisterId> : CapstoneDisassembler
where TDisassembleMode : Enum
where TInstruction : Instruction<TInstruction, TInstructionDetail, TInstructionGroup, TInstructionGroupId, TInstructionId, TRegister, TRegisterId>
where TInstructionDetail : InstructionDetail<TInstructionDetail, TInstructionGroup, TInstructionGroupId, TInstruction, TInstructionId, TRegister, TRegisterId>
where TInstructionGroup : InstructionGroup<TInstructionGroupId>
where TInstructionGroupId : Enum
where TInstructionId : Enum
where TRegister : Register<TRegisterId>
where TRegisterId : Enum {
/// <summary>
/// Disassemble Architecture.
/// </summary>
private readonly DisassembleArchitecture _disassembleArchitecture;
/// <summary>
/// Disassemble Mode.
/// </summary>
private readonly TDisassembleMode _disassembleMode;
/// <summary>
/// Disassemble Syntax.
/// </summary>
private DisassembleSyntax _disassembleSyntax;
/// <summary>
/// Enable Instruction Details Flag.
/// </summary>
private bool _enableInstructionDetails;
/// <summary>
/// Enable Skip Data Mode Flag.
/// </summary>
private bool _enableSkipDataMode;
/// <summary>
/// Disassembler's Handle.
/// </summary>
private readonly NativeDisassemblerHandle _handle;
/// <summary>
/// Invalid Instruction Mnemonic.
/// </summary>
private string _invalidInstructionMnemonic;
/// <summary>
/// Get Disassemble Architecture.
/// </summary>
public override DisassembleArchitecture DisassembleArchitecture => this._disassembleArchitecture;
/// <summary>
/// Get Disassemble Mode.
/// </summary>
public TDisassembleMode DisassembleMode => this._disassembleMode;
/// <summary>
/// Get and Set Disassemble Syntax.
/// </summary>
/// <exception cref="Gee.External.Capstone.CapstoneException">
/// Thrown if the disassemble syntax option could not be set.
/// </exception>
/// <exception cref="System.ObjectDisposedException">
/// Thrown if the disassembler is disposed.
/// </exception>
public DisassembleSyntax DisassembleSyntax {
get => this._disassembleSyntax;
set {
// ..
//
// Throws an exception if the operation fails.
const NativeDisassemblerOptionType optionType = NativeDisassemblerOptionType.SetSyntax;
var optionValue = (NativeDisassemblerOptionValue) value;
NativeCapstone.SetDisassemblerOption(this._handle, optionType, optionValue);
this._disassembleSyntax = value;
}
}
/// <summary>
/// Enable or Disable Instruction Details.
/// </summary>
/// <exception cref="Gee.External.Capstone.CapstoneException">
/// Thrown if the instruction details option could not be set.
/// </exception>
/// <exception cref="System.ObjectDisposedException">
/// Thrown if the disassembler is disposed.
/// </exception>
public override bool EnableInstructionDetails {
get => this._enableInstructionDetails;
set {
// ..
//
// Throws an exception if the operation fails.
const NativeDisassemblerOptionType optionType = NativeDisassemblerOptionType.SetInstructionDetails;
var optionValue = value ? NativeDisassemblerOptionValue.Enable : NativeDisassemblerOptionValue.Disable;
NativeCapstone.SetDisassemblerOption(this._handle, optionType, optionValue);
this._enableInstructionDetails = value;
}
}
/// <summary>
/// Enable or Disable Skip Data Mode.
/// </summary>
/// <exception cref="Gee.External.Capstone.CapstoneException">
/// Thrown if the skip data mode option could not be set.
/// </exception>
/// <exception cref="System.ObjectDisposedException">
/// Thrown if the disassembler is disposed.
/// </exception>
public override bool EnableSkipDataMode {
get => this._enableSkipDataMode;
set {
// ..
//
// Throws an exception if the operation fails.
const NativeDisassemblerOptionType optionType = NativeDisassemblerOptionType.SetSkipData;
var optionValue = value ? NativeDisassemblerOptionValue.Enable : NativeDisassemblerOptionValue.Disable;
NativeCapstone.SetDisassemblerOption(this._handle, optionType, optionValue);
this._enableSkipDataMode = value;
}
}
/// <summary>
/// Get Disassembler's Handle.
/// </summary>
internal override NativeDisassemblerHandle Handle => this._handle;
/// <summary>
/// Get and Set Invalid Instruction Mnemonic.
/// </summary>
/// <exception cref="System.ArgumentNullException">
/// Thrown if the value is a null reference.
/// </exception>
public override string InvalidInstructionMnemonic {
get => this._invalidInstructionMnemonic;
set {
CapstoneDisassembler.ThrowIfValueIsNullReference(nameof(this.InvalidInstructionMnemonic), value);
this._invalidInstructionMnemonic = value;
}
}
/// <summary>
/// Get and Set Skip Data Callback.
/// </summary>
public Func<byte[], long, long> SkipDataCallback { get; set; }
/// <summary>
/// Create a Disassembler.
/// </summary>
/// <param name="disassembleArchitecture">
/// The hardware architecture for the disassembler to use.
/// </param>
/// <param name="disassembleMode">
/// The hardware mode for the disassembler to use.
/// </param>
/// <exception cref="Gee.External.Capstone.CapstoneException">
/// Thrown if a disassembler could not be created.
/// </exception>
/// <exception cref="System.ArgumentException">
/// Thrown if the disassemble architecture is invalid, or if the disassemble mode is invalid or
/// unsupported by the disassemble architecture.
/// </exception>
/// <exception cref="System.OutOfMemoryException">
/// Thrown if sufficient memory cannot be allocated to perform the operation as a rare indication that the
/// system is under heavy load.
/// </exception>
private protected CapstoneDisassembler(DisassembleArchitecture disassembleArchitecture, TDisassembleMode disassembleMode) {
this._disassembleArchitecture = disassembleArchitecture;
this._disassembleMode = disassembleMode;
this._invalidInstructionMnemonic = ".byte";
// ...
//
// ...
this._handle = CreateHandle(this);
// <summary>
// Create Handle.
// </summary>
NativeDisassemblerHandle CreateHandle(CapstoneDisassembler<TDisassembleMode, TInstruction, TInstructionDetail, TInstructionGroup, TInstructionGroupId, TInstructionId, TRegister, TRegisterId> @this) {
// ...
//
// This is an ugly operation but it is the only way I am familiar with to convert a <c>System.Enum</c> to
// a 32-bit integer to pass to the Capstone API. It should be relatively quick since <c>System.Enum</c>
// implements <c>System.IConvertible</c>.
var cIDisassembleMode = Convert.ToInt32(@this._disassembleMode);
// ...
//
// Throws an exception if the operation fails.
var cNativeDisassembleMode = (NativeDisassembleMode) cIDisassembleMode;
return NativeCapstone.CreateDisassembler(@this._disassembleArchitecture, cNativeDisassembleMode);
}
}
/// <summary>
/// Create an Instruction.
/// </summary>
/// <param name="hInstruction">
/// An instruction handle.
/// </param>
/// <returns>
/// An instruction.
/// </returns>
private protected abstract TInstruction CreateInstruction(NativeInstructionHandle hInstruction);
/// <summary>
/// Disassemble Binary Code.
/// </summary>
/// <param name="binaryCode">
/// An array of bytes representing the binary code to disassemble.
/// </param>
/// <returns>
/// A an array of disassembled instructions.
/// </returns>
/// <exception cref="System.ArgumentNullException">
/// Thrown if the array of bytes is a null reference.
/// </exception>
/// <exception cref="System.ObjectDisposedException">
/// Thrown if the disassembler is disposed.
/// </exception>
public TInstruction[] Disassemble(byte[] binaryCode) {
// ...
//
// Throws an exception if the operation fails.
var instructions = this.Iterate(binaryCode).ToArray();
return instructions;
}
/// <summary>
/// Dispose Object.
/// </summary>
public override void Dispose() {
// ...
//
// This operation is safe, even if it is invoked multiple times and the handle is already disposed.
this._handle.Dispose();
}
/// <summary>
/// Get an Instruction Group's Name.
/// </summary>
/// <param name="instructionGroupId">
/// An instruction group's unique identifier.
/// </param>
/// <returns>
/// The instruction group's name.
/// </returns>
/// <exception cref="System.ArgumentException">
/// Thrown if the instruction group's unique identifier is invalid.
/// </exception>
/// <exception cref="System.ObjectDisposedException">
/// Thrown if the disassembler is disposed.
/// </exception>
/// <exception cref="System.NotSupportedException">
/// Thrown if diet mode is enabled.
/// </exception>
public string GetInstructionGroupName(TInstructionGroupId instructionGroupId) {
this.ThrowIfDisassemblerIsDisposed();
CapstoneDisassembler.ThrowIfDietModeIsEnabled();
// ...
//
// This is an ugly operation but it is the only way I am familiar with to convert a <c>System.Enum</c> to
// a 32-bit integer to pass to the Capstone API. It should be relatively quick since <c>System.Enum</c>
// implements <c>System.IConvertible</c>.
var iInstructionGroupId = Convert.ToInt32(instructionGroupId);
// ...
//
// This operation will return a null reference if 1) the handle is disposed, 2) if diet mode is enabled,
// or 3) if the register unique identifier is invalid. Unfortunately it does not differentiate between the
// 3 conditions. However, because we already guarded against conditions 1 and 2, if it does return a null
// reference, it must be because of condition 3.
var instructionGroupName = NativeCapstone.GetInstructionGroupName(this._handle, iInstructionGroupId);
if (instructionGroupName == null) {
const string detailMessage = "An instruction group unique identifier is invalid.";
throw new ArgumentException(detailMessage, nameof(instructionGroupId));
}
return instructionGroupName;
}
/// <summary>
/// Get a Register's Name.
/// </summary>
/// <param name="registerId">
/// A register's unique identifier.
/// </param>
/// <returns>
/// The register's name.
/// </returns>
/// <exception cref="System.ArgumentException">
/// Thrown if the register's unique identifier is invalid.
/// </exception>
/// <exception cref="System.ObjectDisposedException">
/// Thrown if the disassembler is disposed.
/// </exception>
/// <exception cref="System.NotSupportedException">
/// Thrown if diet mode is enabled.
/// </exception>
public string GetRegisterName(TRegisterId registerId) {
this.ThrowIfDisassemblerIsDisposed();
CapstoneDisassembler.ThrowIfDietModeIsEnabled();
// ...
//
// This is an ugly operation but it is the only way I am familiar with to convert a <c>System.Enum</c> to
// a 32-bit integer to pass to the Capstone API. It should be relatively quick since <c>System.Enum</c>
// implements <c>System.IConvertible</c>.
var iRegisterId = Convert.ToInt32(registerId);
// ...
//
// This operation will return a null reference if 1) the handle is disposed, 2) if diet mode is enabled,
// or 3) if the register unique identifier is invalid. Unfortunately it does not differentiate between the
// 3 conditions. However, because we already guarded against conditions 1 and 2, if it does return a null
// reference, it must be because of condition 3.
var registerName = NativeCapstone.GetRegisterName(this._handle, iRegisterId);
if (registerName == null) {
const string detailMessage = "A register unique identifier is invalid.";
throw new ArgumentException(detailMessage, nameof(registerId));
}
return registerName;
}
/// <summary>
/// Disassemble Binary Code Iteratively.
/// </summary>
/// <param name="binaryCode">
/// An array of bytes representing the binary code to disassemble.
/// </param>
/// <returns>
/// A deferred collection of disassembled instructions.
/// </returns>
/// <exception cref="System.ArgumentNullException">
/// Thrown if the array of bytes is a null reference.
/// </exception>
/// <exception cref="System.ObjectDisposedException">
/// Thrown if the disassembler is disposed.
/// </exception>
public IEnumerable<TInstruction> Iterate(byte[] binaryCode) {
CapstoneDisassembler.ThrowIfValueIsNullReference(nameof(binaryCode), binaryCode);
var binaryCodeOffset = 0;
//var startingAddress = 0x1000L;
var startingAddress = 1L;
// ...
//
// The Capstone API's iterative disassemble function has an interesting challenge when it is invoked with
// Skip Data Mode enabled. Because it disassembles one instruction at a time, the binary code buffer that
// it passes to the Skip Data Mode Callback is not the entire binary code buffer passed by the caller, but
// rather only the slice that contains the identified invalid instruction. This makes it difficult for the
// caller to perform any analysis in the Skip Data Mode Callback that might depend on inspecting the
// entire binary code buffer. This isn't necessarily a deal breaker since a caller can work around this in
// multiple ways.
//
// However, we'll do the hard work for the caller here and define the Skip Data Mode Callback as a proxy
// closure that encloses over the entire binary code buffer and pass it to the actual callback defined
// by the caller.
NativeCapstone.Callback callback = null;
if (this.EnableSkipDataMode && this.SkipDataCallback != null) {
// ...
//
// Normally, delegates that are created for the purpose of being passed as function pointers to
// unmanaged code, such as this Skip Data Mode Callback, need to be allocated using a method that
// prevents them from being garbage collected. A delegate created as a local variable typically would
// be a problem because it would go out of scope as soon as the function returns and thus be eligible
// for garbage collection. A process crash is guaranteed if that happens while it is still referenced
// by unmanaged code.
//
// However, because this method is an iterator method, when the compiler compiles it it will actually
// create a new class for the iterator's state machine and every local variable defined will become a
// private field defined by this new class, whose lifetime is actually tied to the lifetime of the
// class. So the problem of garbage collection is actually avoided for the lifetime of the iterator.
//
// To make this work though, we MUST define a local variable for the delegate!
callback = OnNativeSkipDataCallback;
// ...
//
// Throws an exception if the operation fails.
var optionValue = new NativeSkipDataOptionValue();
optionValue.Callback = callback;
optionValue.InstructionMnemonic = this.InvalidInstructionMnemonic;
optionValue.State = IntPtr.Zero;
NativeCapstone.SetSkipDataOption(this._handle, ref optionValue);
}
try {
// ...
//
// We allocate memory for one instruction and reuse it for every instruction in the binary code
// buffer. Throws an exception if the operation fails.
using (var hInstruction = NativeCapstone.CreateInstruction(this._handle)) {
while (!(binaryCodeOffset >= binaryCode.Length)) {
// ...
//
// Throws an exception if the operation fails.
var isDisassembled = NativeCapstone.Iterate(this._handle, binaryCode, ref binaryCodeOffset, ref startingAddress, hInstruction);
if (!isDisassembled) {
yield break;
}
var instruction = this.CreateInstruction(hInstruction);
yield return instruction;
}
}
}
finally {
if (callback != null) {
// ...
//
// Throws an exception if the operation fails. If the operation fails here, it could only be
// because the disassembler is disposed, which will have no side effects if it happens here.
var optionValue = new NativeSkipDataOptionValue();
optionValue.Callback = null;
optionValue.InstructionMnemonic = this.InvalidInstructionMnemonic;
optionValue.State = IntPtr.Zero;
NativeCapstone.SetSkipDataOption(this._handle, ref optionValue);
}
}
// <summary>
// Native Skip Data Mode Callback.
// </summary>
IntPtr OnNativeSkipDataCallback(IntPtr cPBinaryCode, IntPtr cBinaryCodeSize, IntPtr cInvalidInstructionIndex, IntPtr pState) {
// ...
//
// Normally, a closure enclosing over a variable modified from a loop, such as this method, is a
// problem because the value of the variable is resolved at the time the closure is invoked and not
// when the variable is captured. This can lead to unexpected behavior if the closure is invoked
// outside the loop since the value of the captured variable will always be resolved to the last value
// it was set to inside the loop.
//
// However, because this closure will always be invoked from inside a disassemble loop, and never from
// outside of one, the variable value resolution behavior is exactly what we are looking for. We want
// the Capstone API to invoke this callback with an updated value for the captured variable every
// time!
var cBytesToSkip = this.SkipDataCallback(binaryCode, binaryCodeOffset);
return new IntPtr(cBytesToSkip);
}
}
/// <summary>
/// Reset an Instruction's Mnemonic.
/// </summary>
/// <param name="instructionId">
/// An instruction unique identifier.
/// </param>
/// <exception cref="Gee.External.Capstone.CapstoneException">
/// Thrown if the instruction mnemonic could not be reset.
/// </exception>
/// <exception cref="System.ObjectDisposedException">
/// Thrown if the disassembler is disposed.
/// </exception>
public void ResetInstructionMnemonic(TInstructionId instructionId) {
// ...
//
// This is an ugly operation but it is the only way I am familiar with to convert a <c>System.Enum</c> to
// a 32-bit integer to pass to the Capstone API. It should be relatively quick since <c>System.Enum</c>
// implements <c>System.IConvertible</c>.
var iInstructionId = Convert.ToInt32(instructionId);
var optionValue = new NativeInstructionMnemonicOptionValue {
InstructionId = iInstructionId,
InstructionMnemonic = null
};
// ...
//
// Throws an exception if the operation fails.
NativeCapstone.SetInstructionMnemonicOption(this._handle, ref optionValue);
}
/// <summary>
/// Set an Instruction's Mnemonic.
/// </summary>
/// <param name="instructionId">
/// An instruction's unique identifier.
/// </param>
/// <param name="instructionMnemonic">
/// A mnemonic to associate with the instruction.
/// </param>
/// <exception cref="Gee.External.Capstone.CapstoneException">
/// Thrown if the instruction mnemonic could not be set.
/// </exception>
/// <exception cref="System.ArgumentNullException">
/// Thrown if the instruction mnemonic is a null reference.
/// </exception>
/// <exception cref="System.ObjectDisposedException">
/// Thrown if the disassembler is disposed.
/// </exception>
public void SetInstructionMnemonic(TInstructionId instructionId, string instructionMnemonic) {
CapstoneDisassembler.ThrowIfValueIsNullReference(nameof(instructionMnemonic), instructionMnemonic);
// ...
//
// This is an ugly operation but it is the only way I am familiar with to convert a <c>System.Enum</c> to
// a 32-bit integer to pass to the Capstone API. It should be relatively quick since <c>System.Enum</c>
// implements <c>System.IConvertible</c>.
var iInstructionId = Convert.ToInt32(instructionId);
var optionValue = new NativeInstructionMnemonicOptionValue {
InstructionId = iInstructionId,
InstructionMnemonic = instructionMnemonic
};
// ...
//
// Throws an exception if the operation fails.
NativeCapstone.SetInstructionMnemonicOption(this._handle, ref optionValue);
}
/// <summary>
/// Throw an Exception if Disassembler is Disposed.
/// </summary>
/// <exception cref="System.ObjectDisposedException">
/// Thrown if the disassembler is disposed.
/// </exception>
private void ThrowIfDisassemblerIsDisposed() {
if (this._handle.IsClosed) {
const string detailMessage = "A disassembler is disposed.";
throw new ObjectDisposedException(nameof(CapstoneDisassembler), detailMessage);
}
}
}
}