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ABSTRACT. We consider the mean prediction error of a classification or regression proce-
dure as well as its cross-validation estimates, and investigate the variance of this estimate
as a function of an arbitrary cross-validation design. We decompose this variance into a
scalar product of coefficients and certain covariance expressions, such that the coefficients
depend solely on the resampling design, and the covariances depend solely on the data’s
probability distribution. We rewrite this scalar product in such a form that the initially large
number of summands can gradually be decreased down to three under the validity of a qua-
dratic approximation to the core covariances. We show an analytical example in which this
quadratic approximation holds true exactly. Moreover, in this example, we show that the
leave- p-out estimator of the error depends on p only by means of a constant and can, there-
fore, be written in a much simpler form. Furthermore, there is an unbiased estimator of
the variance of K-fold cross-validation, in contrast to a claim in the literature. As a conse-
quence, we can show that Balanced Incomplete Block Designs have smaller variance than
K-fold cross-validation. In a real data example from the UCI machine learning repository,
this property can be confirmed. We finally show how to find Balanced Incomplete Block
Designs in practice.

1. INTRODUCTION

This paper is concerned with the variance of resampling designs in classification and
regression. Our setup is the classical statistical setup: we suppose having observed n inde-
pendent observations from an unknown probability distribution P, where each observations
is comprised of a number of predictors, and a response variable. The latter might be binary,
categorical, or on a metric scale. Furthermore, we suppose we have a particular learning
procedure at hand: any rule that maps a new set of predictors to a pertaining “conjectured”
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response, given a collection of learning observations. For instance, this rule could consist
of multiplying the new data by a vector of estimated regression coefficients, or it might be
a very elaborate machine learning algorithm — just any procedure capable of predicting a
new response, given the learning observations and test predictors, in a deterministic way.
In this paper, we will not distinguish between regression and machine learning because
we will be concerned with their prediction aspects which can be formally treated in the
same way, no matter whether the predicted response was generated by a machine learning
algorithm or a regression. The “success” of the learning algorithm is then measured by the
value of a loss function — which might measure the observed misclassification rate, for
example. There are a multitude of loss functions in use. Then, we will refer to the (un-
known) expected value of this loss function as to the “true error”’, where both the learning
observations and the test observations are random.

We recommend the reader to take a look at Section 2 for a closer introduction of the
concept of “resampling design” as it is investigated here, and for understanding that here
the notion of design is different from the usual statistical meaning of “experimental de-
sign”. Any resampling design, such as cross-validation, defines an estimator of the true
error, and estimation of this variance has proven to be an important but difficult and es-
sentially unresolved issue [Nadeau and Bengio, 2003, Bengio and Grandvalet, 2003/04].
The problem that cross-validation suffers high variance is well studied; further, approaches
aiming at alleviating this are classical and treated in vast amounts of literature. Recently,
in Zhang and Qian [2013], cross-validation designs akin to Latin hyper-cube designs in
experimental design theory were proposed, and it was shown that such designs, although
of a computational cost similar to that of cross-validation, have clearly smaller variance
and are therefore generally preferable. Zhang and Qian [2013, after Formula 12] give a
variance decomposition of the average prediction error estimator associated with several
particular designs; we will give the corresponding formula for any design.

Partial answers are given by the theory of incomplete U-statistics; however, the theory
of incomplete U-statistics has only been developed thoroughly in the case of symmetric
kernels. Here, in contrast, a resampling design is an incomplete U-statistic that is naturally
associated with a non-symmetric kernel but usually not a symmetric one (note that only
complete U-statistics are always associated with symmetric kernels).

Here, we point out the usefulness of statistical design theory to resampling, using this
interpretation of a design. Although design theory has been used in resampling and vari-
ance estimation theory, previous papers seem to have focused on giving surveys [Tang,
1999], whereas we examine model fitting algorithms in general.

Design theory and U-statistics also seem to have been examined in the case where the
blocks are the evaluation indices of symmetric kernels. Here, we look at a very different
scenario: The blocks are the indices of the learning sets, and the kernel is non-symmetric
since it involves a learning set together with a testing observation. Likewise, the literature
describing resampling procedures for model fitting in the language of U-statistics seems to
be surprisingly sparse.

Moreover, Fuchs et al. [2013] outlined that the leave-p-out prediction error estimator
can be seen as a U-statistic and exploited this fact to deduce the existence of an approxi-
mately exact hypothesis test of the equality of the two prediction errors. Since Fuchs et al.
[2013] is a preprint, we give a synopsis of that paper in Section 2.5. Thus, we aim to exploit
the fact that any resampling procedure is an incomplete U-statistic and to view the results
of Zhang and Qian [2013] in the light of the variance calculation framework of U-statistics.
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There is a general theory of incomplete U-statistics designs such that the variance of
such an incomplete U-statistic is as small as possible and, therefore, as close as possible
to that of the leave-p-out classifier [Lee, 1990, Chapter 4]; let us recall the fact that any
complete U-statistic associated with a possibly non-symmetric kernel is simultaneously a
U-statistic associated with a symmetric kernel, namely the symmetrization of the original
kernel. Thus the theory of complete U-statistics is entirely covered by that for symmet-
ric kernels. However, the picture is completely different for incomplete U-statistics. The
reason is that if one defines an incomplete U -statistic just as an average taken over symmet-
ric kernels of a collection of subsets, then one misses a good deal of interesting statistics.
Here, we will investigate a more general definition that calls any average of non-symmetric
kernels an incomplete U-statistic.

In generalizing the theory of incomplete U-statistics to that of non-symmetric kernels,
we give a conceptual approach to finding designs similar to the ad-hoc designs of Zhang
and Qian [2013] which were defined without any mention of U-statistics.

The variance estimation of U-statistics has already been considered in the literature
[Maesono, 1998, Wang and Lindsay, 2014].

The main contributions of this paper are the following. The first key contribuition is a
detailed variance decomposition of the variance of the error estimator of a particular re-
sampling design. This variance decomposition will be optimal in the sense that it separates
the contribution to the variance due to the probability distribution P from the contribution
to the variance due to the resampling design. More precisely, we write the variance of
the error estimator as a linear combination, where the coefficients only depend on the re-
sampling design, and the “basis vectors” of the linear combination are what we call core
covariances — namely, quantities that depend only on the underlying probability distri-
bution P. The second key contribution is that we show how to exploit this variance de-
composition for variance minimization. For this, we rewrite the linear combination just
mentioned in a way which might shortly be described as a transposition operation: Af-
ter an important preparatory step, namely the variance decomposition n Formula (3.4),
we write the variance as (a constant multiple of) a scalar product < f,& > (see For-
mula (3.6)), which will be rewritten in the variance decomposition in Formula (3.11).
In short, the steps in between can be seen as the linear-algebraic transposition operation
< f!,& >=< PB,E >=< B,PTé >=< B, o >. The benefit of this is that the linear com-
bination becomes much shorter under quadratic approximation to the vector B: instead of
up to g + 1 non-zero coefficients, only a term B o + B> has to be minimized. We then
show that these observations imply that Balanced Incomplete Block Designs (BIBDs) are
good candidates for variance minimizing designs. We then demonstrate in full mathemati-
cal detail in an analytical example in chapter 4, that BIBDs are in fact exactly the variance
minimizing designs. We then support this numerically in a real data example (the concrete
slump data from the well-known UCI machine learning repository), that the BIBDs indeed
have notably smaller variance than the ordinary repeated cross-validations procedures of
the same computational complexity.

Thus, this paper can, in total, be read as a plea for using BIBDs instead of cross-
validation. We support this plea by showing how to find BIBDs in practice, using mathe-
matical software. The paper is structured as follows. In Section 2, we specify the set-up,
Section 3 explains the variance decompositions, Section 4 presents an analytical computa-
tion of the core covariances, Section 5 illustrates our theory by a real data set, and Section 6
helps readers to find Balanced Incomplete Block Designs in practice.



2. THE SET-UP

2.1. The loss estimator. The general framework of the loss estimator is slightly more
general than that underlying the largest part of statistical literature.

In the general framework, there is a univariate response variable Y ranging over a set
%/, and a multivariate predictor variable X ranging over 2~ (both 2" and % are assumed
to be equipped with fixed c-algebras). The joint distribution of (X,Y) is described by a
probability measure P on 2" X % equipped with the product ¢-algebra. The quality of the
prediction Y’of Y is measured by a loss function (y,y') — [(y,y"). Typically, binary classifi-
cation uses the misclassification loss ]ly?éy/, but we can also use any other measurable loss.
Other loss functions include, for instance, the usual loss (y —y')?> whose expectation is the
mean-square error, or a survival analysis loss after extending the loss function’s domain of
definition to censored observations.

We fix a learning sample size g and then consider a statistical model fitting procedure
in the form of a function

s (X XYVEXY W

2.1
(-xlaylv' --7xg;)’g7xg+1) = S(-xlaylv“ '7xg7yg;-xg+1)

which maps the learning sample (x1,y1,...,xg,¢) to the prediction rule applied to the test
observation xg 1, and where the semicolon visually separates the learning observations
from the predictor of the test observation. Equivalently, s can be seen as mapping the
learning sample to a classification rule which is a map from predictors 2~ to responses in
% . (Sometimes, s(x{,Y1,...,Xg, Vg5 Xg+1) is denoted by ]/C\(Xg_‘_] |X1,)1,-- ., %g,Yg) to describe
a learned estimator ffor atrue model f: 2" — %.) Throughout the paper, we will assume
that s treats all learning arguments equally, so that it is invariant under permutation of the
first g arguments, and we assume that s is measurable with respect to the product o-algebra
on (X xX¥)Ex X

The joint expectation of the loss function with respect to the g + 1-fold product measure
is

(22) ]E(I(S)) :/"'/l(s(xla)’la-u;Xga)’g;xg+l)a)’g+l)dp(x17)’1)7-~-adP(xg+17)’g+l)

and is called the unconditional loss of the model fitting procedure, where the left-hand
side uses a slightly sloppy but unambiguous notation. It is of practical interest to estimate
it, together with the difference E(/;(s1)) —E(la(s2)) = E(l1(s1) — la(s2)), for two model
fitting procedures s; and s, and two loss functions /; and /;. We allow for each model
fitting procedure to have its own loss function because then the case /; := 0 yields the loss
of a single procedure, which is of obvious practical interest.

Remark 1. E(I(s)) generalizes the usual mean squared error in sense that the loss function
is arbitrary instead of being the quadratic loss, the true model is arbitrary instead of being
in the particular form ¥ = f(X) + €, the predictors X are random, and the expectation
is taken with respect to the learning data as well. Therefore, we treat a broad class of
frequently considered machine learning/statistics set-ups. In particular, our random design
set-up, where the X; are treated as random, is of most relevance in applications because it
allows for out-of-sample prediction.

Even if the true model is of the form ¥ = f(X) + € and the loss is quadratic, one cannot
immediately obtain a bias-variance decomposition as in Hastie et al. [2009, Formula 2.47]
because the joint testing and learning expectation instead of just the testing expectation
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~

leads to covariance between f(Xgy1) and f(Xg41). The derivation of the bias-variance
decomposition usually relies on ignoring this covariance by viewing the X; as non-random.

2.2. Estimators for the loss. Let us define
F(ilv" 'aig;ig-‘rl) = ll(S] (-xi] yYigs- -~7xig7Yig;xig+1)7)’ig+1)
*12(52(?51‘17)’1‘17-~axiga)’igﬂigﬂ)»yz‘gﬂ),

a function on a set of g + 1 different indices iy € 1,...,n, for two model fitting procedures
s1,52 and two appropriate loss functions [y, /.

We have: E(I') = E(/;(s1) — lx(s2)) and © := ET as a slight generalization of (2.2).
The expectations are taken with respect to the (g + 1)-fold product space of 2" x % and
are assumed to exist.

A resampling procedure is a collection of disjoint learning and test sets. For every pair
of learning set and test observation one obtains an “elementary” estimator of the mean
difference of losses. Averaging these across all learning and test sets of the resampling
procedure defines an unbiased estimator for ®. Quite often, another convention is used
where such an estimator is seen as an approximation for the prediction error on another
learning set size such as the total sample size; then, unbiasedness is of course lost. It is
now of interest to gain insight into the variance of such an estimator.

All expectations and variances are taken with respect to the g 4 1-fold product measure
of P. The definition of I" was such that the number g 4 1 of arguments is minimal under
the restriction that ® = [ET" for all underlying probability distributions such that this expec-
tation exists. This minimality would be lost if the definition of I" involved a larger test set
size than one.

Let .7 be a collection of pairs (S,a) where S C {1,...,n} is an (unordered) set of

(2.3)

disjoint learning indices, and a € {1,...,n}\ S is a test index. Then, each I'(S;a) is an
“elementary” estimator of ®, and
~ 1
0(7):= T Y TI(S:a).
7 (Sa)eT

In simple cases, it is possible to compute ® analytically. For instance, we will do so in
Section 4.

2.3. Resampling. We define a resampling design to be an arbitrary collection .& of differ-
ent size-g-subsets of {1,...,n}, where n is a sample size and 1 < g < n is a learning sample
size. For each such g-subset, its complement — a subset of size n — g — is interpreted as
its corresponding test set. For instance, two-fold cross-validation, viewed as a resampling
design, is described by the collection

S ={{1,....,n/2},{n/2+1,...,n}}
containing the indices of the observations in the two learning sets. The leave-one-out
resampling design is described by

< ={{1,2,3},{1,2,4},{1,3,4},{2,3,4}}

for n = 4, and so on. However, we will also consider less well-known examples of resam-
pling designs ..

A “resampling procedure”, in the sense of this paper, is an estimator of a classification
algorithm’s true error rate, or of the expected value of a loss function, in general. This esti-
mator is a random variable whose expectation depends only on the data generating process
(the data distribution), the learning algorithm/regression procedure, the loss function, and
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the learning sample size. We are interested in the variance of this random variable, viewed
as a function of ., for a fixed data generating process (distribution), and a fixed learn-
ing/regression algorithm. We are not going to distinguish between learning and regression,
and will always speak of the error, defined by an appropriate loss function.

The resampling procedure estimates the prediction error of some algorithm or regres-
sion procedure in the following way: for each g-subset in the design .#, a prediction rule
is fitted onto the corresponding observations, and the performance of this prediction rule
is evaluated using the observations corresponding to the test set. The average of all these
prediction errors (or loss functions, in general), taken across all learning sets in the design,
is an estimator of the expectation of a loss function of a model fitting procedure; see Sec-
tion 2 for details of the set-up. An example of a resampling design is the collection of all
(Z) subsets, leading to the leave-p-out estimator of the average prediction error; a recent
preprint [Fuchs et al., 2013] exploits the fact that this estimator is a U-statistic to derive
its properties. Consequently, it is asymptotically normally distributed under a very weak
condition, namely that of existing and non-vanishing asymptotic variance.

We employ the notion of statistical design of experiments in the following way. The n
independent observations — each comprising predictors and a response — correspond to
the “treatments”, and the K learning sets correspond to the “blocks”.

The condition that all the blocks have the same size corresponds to our assumption that
all learning sets have the same size g. Thus, a resampling design is a particular matrix
of size n x K with binary entries such that the column sums are equal to g. The design
is called equireplicate if each observation is contained in the same number of learning
sets. The usual triple (b,k,v) of design theory (as in, for instance, [Bailey and Cameron,
2013]) becomes (K, g,n) in our notation. Thus, our point of view where the independent
observations correspond to the treatments, differs from the usual interpretation of a design,
where the independent observations are the experimental units that make up the blocks.

The true mean loss of the prediction rule learned on samples of size g can be interpreted
as a statistical parameter ®, depending only on the underlying distribution, the learning
algorithm, and the number g, but not the sample size n. A resampling design in our sense
yields, by construction, an unbiased estimator of @, as we will see below. In contrast, the
bootstrap estimator of ® is not unbiased; likewise, the jackknife variance estimators are
not unbiased. In this paper, we focus our attention on unbiased estimators. For this reason,
we shall not investigate any bootstrap or jackknife procedure.

2.4. Complete and incomplete U-statistics. This section summarizes some definitions
and ideas from [Hoeffding, 1948]. Let n denote the sample size. A U-statistic is a statistic
of the form U = (’,:)71 Y h(z,...,zi,) for a symmetric function % of k vector arguments,
where the summation extends over all possible subsets (ij,...,i). Since the number of
such subsets is (’;) the expectation of U is equal to that of /& with respect to the k-fold
product measure of P, so U is an unbiased estimator of E(h). A regular parameter is a
functional of the form P+ [hd*(P). The minimal k such that there exists a symmetric
function & such that E(h) = © holds for all probability distributions P is called the degree
of the U-statistic. Any such minimal function is called a kernel of U. If a non-symmetric
function with that property exists, then, by symmetrization, a symmetric function exists.

An important property of U-statistics is that they are the unique minimum variance esti-
mator of the expected value ®. Furthermore, the convergence of U towards ® is controlled
by precise theorems: the Laws of Large Numbers, the Law of the Iterated Logarithm, the
Law of Berry-Esseen, and the Central Limit Theorem.
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An incomplete U-statistic is often defined in the literature as one associated with a
symmetric kernel, namely as a sum of the form K~! Y. h(zs,,-..,zs,), where h is a
symmetric function and .¥ is a collection of k-subsets S. We write || =: K because it
generalizes the corresponding nomenclature in K-fold cross-validation. Since 4 is sym-
metric, it suffices to extend the summation over collections of increasing subsets, and an
evaluation of # is already determined by its evaluation on increasing indices: each subset
S can be written as S = (§;) such that 1 < §; <--- < S < n.

Here, we will consider statistics of the more general form | 2|~ Y. h(zgrys---,2R,)
where £ is not necessarily symmetric, and Z is a collection of ordered size g-subsets of
{1,...,n}.

Variance-minimizing designs have been set up for incomplete U-statistics with sym-
metric kernels but not yet for those with not necessarily symmetric kernels. We will do
so in the special case of & =TI'. This allows to treat the issue of finding small-variance
designs — a problem from machine learning and statistics — in the powerful framework
of U-statistics.

One could consider variance minimizing designs associated with the symmetrization I'g
(as defined below) but the variance can be reduced further in the general case.

2.5. A test for the comparison of two mean losses. Here, we give a short, self-contained
overview of the results of Fuchs et al. [2013]. One defines

Lo(1,...,g+1):=(g+ 1) Y. T(n(1),....7(g);m(g+ 1))

where the sum is taken over all g+ 1 cyclic permutations 7 of 1,...,g+ 1, namely all
permutations of the form (1,...,g+1)— (g,...,g+1,1,...,g—1), whereg€ {1,...,g+
1}. Then Iy is the leave-one-out version of T, and I'y is a symmetric function of g + 1
vector arguments. Therefore, Iy defines a U-statistic, and sorting out the terms shows that
this U-statistic is the leave-p-out estimator of the error [Arlot and Celisse, 2010] where
p :=n— g (this definition holds for the rest of the paper). Likewise, I'y is obtained from
I" by symmetrizing over all (g + 1)! permutations; the sum then simplifies to the cyclic
permutations because all learning observations are treated equally.

Let .7, or, when the sample size is needed, .7, , denote the maximal design, consisting
of all (Z) (n— g) possible pairs (S;a). Then, the U-statistic associated with the symmetric

kernel T’y is @(9*) the leave-p-out estimator.

An important consequence of identifying the leave-p-out estimator as a U-statistic is
that it has minimal variance among all estimators of the mean difference of losses. Also,
all of the many properties of U-statistics, such as asymptotic normality and so on, auto-
matically apply to the leave-p-out estimator @(9*)

We implicitly assume

Assumption 1. The degree of © is exactly g+ 1. Similarly, the degree of ®2 is 2g + 2.

Remark 2. It seems to be very hard to prove analytically the first part of the assumption, or
to give numerical evidence. However, it seems to be very intuitive to assume that the true
error can not be achieved by a smaller learning set size than g, across all distributions P.

The second part of the assumption is violated, for instance, if 612 = 0 (defined in Def-
inition 3.1), which corresponds to the case that the U-statistic is degenerate. It is un-
clear whether the second part of the assumption can be violated if the U-statistic is non-
degenerate.

7



Furthermore, it turns out that the variance of a U-statistic U, trivially given by EU? —
@7, is another regular parameter and can therefore be estimated by a U-statistic. How-
ever, under Assumption 1, the variance is a U-statistic of twice the degree of that of the
underlying U-statistic, and therefore, there is no unbiased estimator of the variance of the
leave-p-out error estimator unless n > 2(g + 1). Therefore, the learning set size must be
less than half the total sample size.

However, under this constraint, studentization is possible because of the consistence of
the variance estimator, the Laws of Large Numbers, and Slutsky’s theorem. This leads to

the fact that the standardized statistic (U? — ®2)~!/2U is approximately normal, implying
that there is an approximately exact test for the comparison of the losses of two statistical
procedures [Fuchs et al., 2013].

3. THE CORE COVARIANCES AND THEIR THEORETICAL PROPERTIES

In the following, we will generalize the variance decomposition of Bengio and Grand-
valet [2003/04, Corollary 2, Formula (7)] to arbitrary designs. Thus, we will derive the
general formula for the variance of a resampling procedure. In particular, we will take
advantage of the fact that the large number of covariance terms occurring in the variance
of a resampling procedure reduces to a few core covariance terms which we will call T[SO.

The important results are formulae (3.4), (3.6), (3.11), called “core covariances”. The
coefficients of these linear combinations only depend on the design .#, and the parameters
only depend on the data distribution, the algorithm and the loss function.

These regular parameters Tfl, &, oy are all closely related to the quantities §; of Hoeffd-
ing [1948], which we will call 0'5 — in Section (3.2) we will explain Hoeffding’s quantities
as linear combinations of the more “fine-grained” ’L'é, &, oy We then go on to show that
these decompositions are useful for deriving results on variance-minimization in the small
sample case, as well as asymptotic results. For instance, we derive the variance structure
of cross-validation in Theorem 3.8.

Our first goal is the variance decomposition in formulas (3.6) and (3.11). These are
variance decompositions of incomplete U -statistics associated with only partially symmet-
ric kernels. In the particular case where the kernel is symmetric (which does not happen
for kernels of the form (2.3)), we recover part of the variance decomposition of incomplete
U-statistics as in Lee [1990, Chapter 4].

However, it is quite important to note that our variance decomposition (3.11) is some-
what analogous to, but does not reduce to, the variance decomposition of Lee [1990, Chap-
ter 4, Formula (2)]. In fact, our quantities By only refer to the learning sets and are therefore
different from Lee’s By’s.

The variance decomposition (3.11) will turn out to be particularly useful for minimiza-
tion: we will show that in the case where the quantities &. are polynomial, the decomposi-
tion is particularly short and, thus, lends itself well for optimization. We show in Section 4
that this strategy works in the case of a simple regression toy model. In it, the coefficients
of the linear combination are polynomials of degree at most two that only depend on the
sample size and the learning set size. Thus, they are known in advance of seeing the data
and easily calculable. The decomposition is a significant generalization of the classical
decomposition of Hoeffding [1948, Formula 5.18] for the variance of a U-statistic to the
case of an incomplete U-statistic associated with a symmetric kernel. The difference of
our variance formula to Lee’s is that ours extends over four series of covariances instead
of just one. It turns out that the variance expression thus attained is extremely difficult
(or perhaps impossible) to minimize over all designs of a given size — uniformly over all
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underlying probability distributions P. Therefore, we will approximate an asymptotic case
of large sample size.

In contrast to a definition just containing symmetric kernels, we will have to perform op-
timization for non-symmetric kernels. Then, the kernel defining the U-statistic which is the
leave- p-out error estimator, is genuinely non-symmetric. The associated symmetrization is
the leave-one-out error estimator on a sample whose size is just one plus the original learn-
ing sample size. We are now faced with the difficulty that this kernel is computationally
very unfortunate. Therefore, we set out to generalize the theory of incomplete U-statistics
to that of non-symmetric kernels. However, we will do so just for the case of a mildly
non-symmetric kernel such as ours — in fact, only a few summands are necessary in order
to obtain a symmetric one. Subsuming this point, it seems that the existing theories are re-
stricted to the case of symmetric kernels. In contrast, a proper resampling procedure would
not rely on a symmetric kernel, because there is no reason why small-variance procedures
could be achieved with a symmetric kernel. Moreover, it seems very intuitive that the
symmetrized formula of the kernel leads to a very high ratio of variance to computational
cost.

Definition 1. Let S={1,...,g}, a=g+1, S ={g+2,...,2¢+ 1}, d =2g+2. Then,
the functional @7 is defined by

O (P) = / / T(S;a)T(S":d)d**2P(Zy . .. Zogsn).

This is a regular parameter of degree at most 2g + 2. In the case that ® is degenerate
(meaning that o1 = 0 for all P where o is defined in (3.1)), ® =E(To(1,...,g+ )To(g+
2,...,2g+2)) and therefore it is of smaller degree, it seems reasonable to assume that this
is the only way ®? can have smaller degree.

3.1. The four series - definition. Let us now consider products of two evaluations of I"
where the index sets overlap in d indices, but there is either no overlap in the test indices,
or one test observation occurs in the learning observation of the other, or both test obser-
vations occur in the other’s learning set, respectively, or both test observations coincide.
These four cases are illustrated by Figure 1 and describe all possible configurations.

Definition 2.
E(C(1,...,g:¢+1I(1,...,d,g+2,...,2¢+1—d;2g+2—d)), i=1
T§i> @4 ET®1,...,;g+DI1,....d—1,g+1,....2¢+1—d;2¢g+2—d)), i=2
E(T(1,...,g:+ DI(1,...,d—2,g+1,... 2g+2—d;d — 1)), i=3
E(®1,...,g;g+DC,...,d—1,g+2,...,2¢+2—d;g+1)), i=4
ford=1,...,g+1, and the exceptional cases Téi) =0 for all i, and ’L'](B) = T:,L_)] = T}gl =0.

Remark 3. Therefore, the quantity 62 from Bengio and Grandvalet [2003/04] appears in

this classification as ‘cr(i)n K41 where n is the total sample size and K is the number of blocks
of cross-validation, their @ is our Tr(li)n IK and their 7y is our rr(i)h rant The seemingly

more complicated nomenclature, involving lower indices, allows for the treatment of any
resampling procedure instead of only cross-validation.

Notational Convention 1. Throughout this work, we denote the total overlap size between
two evaluation tuples (SU{a}) and (S'U{d'}) by

d:= |(Su{a}9)m(S’u{a'})|



o

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 1. Let (S,a) and (§',4’) be any pair of g-subsets S and ', and a ¢ S,
a' ¢ S'. Then Cov(['(S;a),[(S';d’)) only depends on which of the four cases
describes the overlap pattern. Here: example for d =5

The overlap between two learning sets S and S' is denoted by
c:= SN

The interest in these quantities is that any occurring covariance between evaluations of
I' is equal to one of them. Note that there is an astronomical number of possible pairs of
(@)

evaluations of I, but there are only 4g + 1 quantities 7, ’ unequal to zero.

Observation 1. Let (S,a) and (S',a’) be any pair of g-subsets S and S, anda ¢ S, a’ ¢ S'.

. . () . :
Then Cov(F(S,a),li(.s/,a/)).— T(sulahn(suay) Tor some i = 1.,....,4 that defscrl.bes. the
overlap pattern. This is obvious from the fact that I" is symmetric in the learning indices,

and the product measure d"P is permutation invariant.

3.2. 63 as a linear combination of the core covariances. Let us define
(3.1 o7 :=E([y(1,...,g+ Nlo(g+2—d,...,2¢+2—d)) — ©*

ford=1,...,g+1. (65 is called ; in Hoeffding [1948].) Thus, 63 measures the covari-

ance between two symmetrized kernels whose overlap has size d. By a short computation,

these numbers can be seen to be conditional variances, hence they are non-negative and it

is justified to define them as squares. By plugging in the definition of I'y and expanding
10
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the sum we arrive at the following expression in terms of the four series:
(3.2)

1
03 = W((g+ 1—d)* 1V 4 2d(g+1—-d)- 7P +d(d—1) -7 +d~rj,4>).
In particular, we see that the right hand side must be non-negative.

The asymptotic variance of the complete U-statistic, the leave-p-out estimator, is (g +
1)2612 /n [Hoeffding, 1948, 5.23] (recall that p = n — g). So, the limiting variance is
3.3) lim nV(0(Z,)) = g2t + 272 + 1Y,

n—oo

where the limit is taken for g fixed.

3.3. Variance decomposition of incomplete U-statistics. Let us turn our attention to the
general incomplete U-statistic associated with a collection 7 of pairs (S,a) of a learning
set S and a test observation a ¢ S. We will briefly denote an overlap size and type of pattern
by ¥((S,a),(S",d")) = (d,(i)) when |(SU{a})N(S'U{d'})| = d and the type is (i), and
will then write 7(¥((S,a), (S',a')) instead indicating the type of the overlap pattern with
lower and upper indices.

The variance of the cross-validation-like procedure associated with the collection 7 is

V(©(7)) = ‘yrzkz;COV(F(SkZGk)vr(Sﬁal))

= \ﬂrzgrm(sk,ak),<S,,az>>>

P )
=17 Z) (Zhv((sk,ak),<s,,a,>>=<d.,<i>>)fd :

d,(i) Nkl

3.4)

The expression in brackets “counts” the number of occurences of the overlap pattern d, (i)
among all pairs of (S,a). These expressions are known to the researcher and need not be
estimated. Hence, they can be viewed as scalar coefficient; by which the huge sum over all
pairs (k,1) is abbreviated to a much shorter one over the numbers (d, (i)). Also, this sum
can be read as a sort of scalar product between the vector of these numbers, indexed by the

(d, (i), and the vector ‘c[(li). This point of view will become very useful below.

3.4. Variance decomposition of test-complete designs.

Definition 3. (1) Consider the following linear combination of the ‘L'L(ii):
Ei=(n—2g+c)(n—2g4+c—1)- e +2(g—c)(n—2g+c¢)- Tc(i)l—i—

®3)

(3-5) 2 (4)
tg—e)  tin+(n—2g+c) 7y,

forallc=0,...,g, where Tﬁz =0.

(2) Furthermore, let us call a design 7 fest-complete whenever the following holds:
(S,a) € 7 = (S,b) € J for any b ¢ S. In words, a design is test-complete
whenever it contains, together with a learning set S, the combinations of S with all
possible test observations. Note that a test-complete design is uniquely specified
by the learning sets it contains. Whenever a test-complete design 7 is specified
by the collection of learning sets it contains, we will write .& for the collection of
learning sets, where each learning set S is counted only once even if it occurs in

11



several pairs (S,a). Thus, |.7| = K(n— g) (of course, we suppose . to contain
each learning set only once).

(3) Let .7 be a test-complete design. For any ¢ =0, ..., g, let ff € Np be the number
of ordered pairs of learning sets (S,S'), both occurring in .7, such that [SNS'| = c.
Pairs (S,S) with the same learning set occurring twice are also allowed (where ¢
is a mere symbol instead of an index).

For instance, any cross-validation design is test-complete. The same holds for the com-
plete design defining the leave-p-out estimator. For any test-complete design, the asso-
ciated numbers f! are easily computable. For instance, they are given by the number of
entries equal to ¢ in N” N, where N is the incidence matrix of the learning sets occurring in
the design. Obviously, only test-complete designs seem to be relevant in practice because
of the low computational cost of evaluating the loss function for a given model and given
test observations.

Theorem 1. Let T be a test-complete design and let . be the associated collection of
learning sets. Then, the variance of the error estimator satisfies

o~ g 0
(3.6) V(O(7)=|77?Y flE
c=0

where E. was defined in (3.5).

Proof. This follows from expanding the variance as in (3.4) into the form |.7| -2 multiplied
by the sum of all entries of the |.7| x |7 |-covariance matrix between the non-rescaled sum-
mands of @)(9 ) and counting the terms. Each entry of the covariance matrix is described
by two pairs (S,a),(S',a’) and therefore defines a specific type (1),...,(4) of the overlap
pattern between (S,a) and (S',a’), and a particular overlap sized = |(SU {a}) N (S'U{d'})|.
Any two summands of the same type (i) and the same overlap size d are equal, namely Ty).
Now, counting and summing up all such terms with learning overlap size ¢, one obtains &..
This implies the result. O

Minimization of the expression Y, ff &. seems to be very hard in practice. However, we
will outline below a few cases where this task is feasible.

Example 1 (Variance of cross-validation). Let us assume n is divisible by K, and that
therefore the learning sets have size g = n—n/K. We then arrive at the following. For
K-fold cross-validation, K > 2, we count

0, c¢{n—n/K,n—2n/K}
(3.7) ff={k, c=n—n/K

K>—K, c=n-2n/K.

The variance of cross-validation is given by the formula

G8) VO =K =l 1=K, e
In the case K = 2, we obtain the expression

~ 1
(39) VO(7) = (/2= Dr+n/2 57 410 )

Since it is unclear whether and how fast the Tc(zi) converge to zero, one can not immedi-
ately deduce asymptotic statements from (3.9).

12
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3.5. Non-asymptotic minimization of f&,.

Definition 4. Let 7 be a test-complete design. For y=1,...,gand asubsets C {1,...,n}
such that |s| = 7, let n(s) be the number of learning sets S in the design (where each single
learning set is counted only once) such that s C S. Let Bf, := Y, n(s)?, where the sum is

taken over all (}) subsets 5. Analogously, let B := K> = |7 Pn—g)2=Y% L.

Lemma 1. The quantities ff are uniquely determined by the B?,. In fact,

=y (Ne,

Y=c
forall0<c<g.
Proof. For 1 < ¢ < g, the proof proceeds in complete analogy to the proof of Lee [1990,
Chapter 4, Equation (7)], even though our f! and By are quite different from Lee’s f. and
B
’}/.
For ¢ = 0, one has

5 8 ¢ 8
c=0 c=1

c=1Yy=c be

(C1)7B,= Y (~1)"B,,

1 r=0

ngks

using that Y7, (—1)¢(Y) = —1 forall y > c. O

Let us write this result in the form f* = PB for the upper-triangular matrix P defined by
Pey=(—1)7<(?) forall0 < ¢ < y< gand P., =0 for y < c, where (}) := 1 forall y >0
(The map described by the matrix P is often called the binomial transform.) Using (3.6),
we can now write V(0(.7)) = |.7| 2 < (€ >=|7| 2 < PB,E >=|T| 2 < B PTE >

For this reason, we consider the binomial transformation PT € of the vector & separately:

Definition 5.
(3.10) = i(l)“@)éc forall0<y<g
=0
Thus, we have shown that
(3.11) V®(7) = |72 Y By,

=0
and in order to minimize this, we have to maximize those By for which a, is negative, and
minimize those for which it is positive. This stands in contrast to the classical case of [Lee,
1990, Chapter 4] where all By have to be minimized.

The usefulness of (3.11) lies in the fact that in the case that &. is a polynomial of
small degree in c, all oy vanish when ¥ is greater than the polynomial’s degree because
Y/ o(=1)¢(*)c? =0 for any d < y. In Section 4, we will exhibit a case where the & is a
polynomial of degree two. Precisely, if & is of degree one, we have . = b+ Ac and then
oy =b,a; =A and ay =0 for y > 2. If & is of degree two, we have & = b+Ac+Cc?,
and then it is easy to calculate that

oy =>b
3.12 a=A+C
(- ) oy =2C

oy =0 forall y> 3.
13



4. ANALYTICAL COMPUTATION OF THE CORE COVARIANCES IN A TOY INTERCEPT
ESTIMATION MODEL

Let us consider the following simple example. The random variable X is univariate and
distributed according to some unknown distribution Py, and the joint distribution of (¥,X)
is given by the simple model

4.1 Y =PBo+piX +e,

where € ~ .#(0,0?%) with By and 6 unknown. This model is a close relative of that used
in univariate ordinary regression except that the slope coefficient 81 is known and only the
intercept is estimated.

We show the following facts in supplement A: There is an explicit formula for the
kernel I, the Tc(l) are quadratic polynomials in ¢ which we write down, consequently, &, is
a quadratic polynomial in ¢ as well, and oy is non-zero if and only if y=0,1,2.

A first consequence is that by (3.11), two designs have the same variance already as
soon as they have the same By, B and B;.

Example 2. The calculations of supplement A can be used to compare the variance of
cross-validation with that of the leave-p-out estimator in closed form expressions. Since
© =E(0(7%)) = 62(1+ 1/g), one may suspect and check by direct computation that the
leave-p-out estimator on a sample of size n has the short form

O(7) =5 (1+5")

with the usual unbiased residual variance estimator s* for 62, defined as

n
S XLV yn) = (0= 1) Y (2 —2)7,
i=1

where z; = y; — Bixi = Bo + &. Since s> ~ 6*(n—1)"1x2_,, the leave-p-out estimator is
distributed as the 6*>(1+g~")(n—1)~'-fold of a chi-square of n — 1 degrees of freedom.

Therefore, the variance of the leave-p-out estimator is V(c*(1+g ) (n—1)"1x% |) =
ct(l+g Hn—-1)22n-1)=20*1+g H)n-1)""

This is consistent with the fact that by (3.3) and (3.2), we have lim,,_mnV(@(Z)) =
2(g7% +2g¢ ' + 1)6* which could also be derived from the expression

V(O(7) = |72 Y By

So, we have derived the rescaled limiting variance of the leave-p-out estimator in three
ways.

In contrast, for the design F5.cy describing two-fold cross-validation (g = n/2), we
obtain by (3.9):

(4.2) V(O(Tey)) =20* [n7! +14n72].

One can check that V(0(%,)) < V(©(Tey)) for all n, as it should.
Denote by s% the unbiased estimator s* calculated on a sample of size n/2. Then,

(21 es2n) Z[VFI + 14n72] -s%(zl,...,zn/z)s%(zn/2+l,...7zn)

is an unbiased estimator of (4.2), which exists as soon as n > 4, in contrast to Bengio
and Grandvalet [2003/04]. Note that this unbiased variance estimator is targeted at the
particular situation, and is unrelated to the general variance estimator mentioned in 2.5
which only exists if n > 2g + 2 and therefore excludes two-fold cross-validation where
n=2g.

14
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Note that minimizing ) Byoy involves only three non-zero summands whereas Y, ffﬁc
involves g+ 1 summands. Therefore, the minimization problem’s dimensionality is drasti-
cally reduced when passing from the &. to the .

Let us now show how to apply our calculations to the variance minimization problem.
Let us say we are given fixed values for n,g and K. The problem is to find a design that
minimizes the expression Bjo; + By, because the pre-factor as well as the summand
corresponding to ¢ = 0 of (3.11) can be ignored because they are determined by the pre-set
quantity K.

Let us assume that each observation occurs in the same number of learning sets. This is
analogous to the usual restriction to equireplicate designs as in Lee [1990, Section 4.3.2]),
and we also call such designs equireplicate, even though we are only referring to the learn-
ing sets. In such designs, the condition that B; = K?g?/n is imposed. Thus, only B,
remains as a degree of freedom in the optimization, eliminating any trade-off between
competing components. Since o > 0, B, has to be minimized. Subsuming the results of
this section, we have shown the following:

Theorem 2. In the intercept estimation model (4.1), all equireplicate designs —for fixed
n,g and K- that have the same B, have the same variance. Any equireplicate design
with minimal By among all equireplicate designs achieves the minimal variance among all
equireplicate designs of the same n, g, and K. Assuming that the configuration of n, g, and
K allows for the existence of a Balanced Incomplete Block Design (see Definition 6), any
Balanced Incomplete Block Design of these n, g, and K is a design with minimal variance
among all equireplicate designs of these n, g, and K.

Proof. 1t only remains to show the last assertion. This is done in complete analogy to the
proof of Lee [1990, Chapter 4, Theorem 1]. O

For instance, for g = 2, B, is bound to be equal to K, and therefore all equireplicate
designs have the same variance. Another simple example is the leave-one-out case g =
n—1,K = n. Then, the minimality of the design’s variance has been unveiled to be the
minimality of a symmetric Balanced Incomplete Block Design’s variance.

Since the oy, unlike those in the classical context, can happen to be negative, one might
ask whether there exists a configuration (n,g,K) such that an equireplicate design exists
but a non-equireplicate design has smaller variance than the best equireplicate one. Such
a non-equireplicate design would then maximize B; instead of minimizing B;. Thus, it
would be, in some sense, the “opposite” of an equireplicate design.

It seems that whenever &, is a polynomial in ¢ of small degree, arguments similar to
those in this chapter can be used to determine equireplicate minimal-variance designs in a
non-empirical way.

5. REAL DATA EXAMPLE: THE CONCRETE SLUMP DATASET

5.1. Preparation: Explanation of the reported table. In the preceding chapters, we
have collected theoretical evidence that balanced incomplete block designs provide a bet-
ter approximation to the optimal, namely the leave-p-out estimator of the error rate, than
ordinary cross-validation.

In order to properly explain how we go about estimating these variances in the results
table 5.3, we need some preparation.

We have the following goals:

(1) First, we will show how to find a balanced incomplete block design suitable for a

given real dataset.
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(2) Second, we want to illustrate the main point of the present paper: namely, to show
that the BIBD does indeed have smaller variance than ordinary cross-validation
with comparable values of the resampling design size K.

Let us explain the latter point. We want to use the dataset of the limited size n itself, and
we want to take an intuitive approach to doing so, instead of having to estimate any of the
quantities TU(;), etc.

Let us assume we have fixed a learning set size g < n.

We know theoretically that the best (i.e., minimal variance) estimator of ©® is the leave-
(n — g)-out estimator for a given g. However, the leave-(n — g)-out is computationally
inaccessible.

Both cross-validation and BIBD have higher variance than the leave-(n — g)-out. In
order to demonstrate that a BIBD is superior to ordinary cross-validation, we would like to
estimate the variance of cross-validation, the variance of the BIBD, and the variance of the
leave-(n — g)-out estimator, to show how one is successively smaller than the other, in that
order. )

Variance estimation is possible by estimating all the quantities ‘cl(il) , because the variance

of any design is a linear combination of these Ty) , as we have abundantly discussed in the

preceding chapters, and one can use a simple plug-in estimator.

However, we have seen that unbiased estimation of T(y) requires unbiased estimation
of ® which is impossible unless n > 2g + 2. This excludes ordinary cross-validation in
which g > n/2.

Fortunately, there is another approach suitable for demonstration of the fact that the
BIBD has smaller variance than cross-validation. In fact, let us consider the set S, of all
permutations of the sample n (S, is commonly called the symmetric group on n elements).

Let us consider the probability distribution generated by drawing the data, as usual,
from the underlying probabilty distribution P, followed by randomly permuting the data.

Let us abbreviate the dataset before permutation, consisting of the matrix X of predic-
tors and the response vector Y by (X,Y). Then, by the law of total variance, applied to
conditioning on the observed data before the permutation procedure, we have

V(0(.7)) = E(V(O()|(X,Y))) + V(E(O()|(X,Y)))

(5.1 ~
=E(V(0(2)|(X,Y))) +V(x)

because the expectation E(@(.7)|(X,Y)) of U(.%) under permutation of the data, given
the data, can easily seen to be exactly equal to the leave-(n — g)-out *.

Furthermore, the left-hand side of the equation, V(U (& )) is equal to the variance we
are interested in, investigated in the rest of this paper, because the distribution of the per-
muted data is equal to the distribution of the data itself, so, in particular, the variances are
the same.

Now, let ¥ and %5 be two different designs which we want to compare. Then,
plugging these into (5.1) in place of .# results in two expressions for V((:)(yl)) and

V(@(ﬂz)) Subtracting these two expressions from each other, the term V(x) cancels out
because it does not depend on . anymore, so we obtain

(52 VU(A)-V(U(HA) =E(VUA)|X,Y)))-E(V(U(H)|(X,Y)))

Thus, we arrive at a very important observation, which will help us to report the results on

a real dataset: Even though it became clear in the preceding chapters that the variance of a

single design can not be estimated without bias unless n > 2g + 2, the difference between
16
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two such variances can very easily be estimated without bias, namely by permuting the
data and applying the usual naive variance estimator across the permutations.

In a nutshell: Even though one can not estimate the variance of a design globally, i.e.
by itself (unless g is small: g < (n—2)/2, as we have discussed in the preceding chapters),
we can actually estimate the difference of two such variances, belonging to two different
designs with arbitrary but the same g.

As another byproduct of this discussion, we retain a simple fact: The naive variance
estimator applied to some random permutations of the data does not estimate the variance
of the error itself, but estimates the variance of the error minus the variance of the corre-
sponding leave-(n — g)-out estimator.

Therefore, we can illustrate the main message of this paper by reporting the permuted
variance estimator, and showing that BIBD has a smaller permutation variance than cross-
validation. It then follows from this subsection that the total variance of the BIBD is
estimated to be smaller than that of cross-validation, which is what we show in this paper.

5.2. Description of the dataset. A canonical source of datasets for demonstration of
practical applicability is the UCI Machine Learning Repository. Since this paper is con-
cerned with any regression/prediction method, and applies to, but is not peculiar to high-
dimensional problems, there was no need to choose a high-dimensional dataset (p > n).
Instead, we looked for a medium-dimensional dataset, where p < n, but not p < n.

The concrete slump dataset by I-Cheng [2007] consists of n = 103 observations of con-
crete specimens. On each of them, the content of seven components were measured in
kilograms per cubic meter: slag, fly ash, water, superplasticizer, coarse aggregate, and
fine aggregate. The response variable is slump, a measure of the concrete’s fluidity and
workability. Usually, slump is to be optimized by balancing the seven ingredients under
certain constraints. This explains the practical interest in predicting slump from the seven
covariables.

5.3. Numerical results. This dataset lended itself for analysis because it was amenable to
an ordinary least squares fitting procedure, using the squared difference between measured
and observed slump as outcome variable. A preliminary analysis showed that the residuals
were sufficiently normally distributed.

Since we rely on speed and computational efficiency, we applied a principal component
analysis dimension reduction to the dataset retaining the first three principal components,
reducing the dimensionality from seven to p = 3. The reason was the following: In order to
be able to report the leave-(n — g)-out estimator which is computationally very costly, we
implemented a very fast version of the OLS fitting procedure in the C programming lan-
guage, benefitting from matrix inversion for symmetric three-by-three matrices by explicit
formulae.

We investigated three values of the learning set size: g = 50,76,96, because for g = 76
and g = 96 a Balanced Incomplete Block Design was readily available, albeit for a slightly
differing value of n, namely for n = 101. We are going to explain how we adapted the
design to the larger sample size. Finally, the learning set size g = 50 was chosen so that
the condition n > 2g + 2 was satisfied. Thus, there was an unbiased variance estimator for
g=>50.

In each of the steps described in the following, the slight mismatch of sample size
(either between 103 and 101 for the BIBD, and between 103 and 100 for two-fold cross-
validation), was accounted for by randomly omitting two or three observations in each fold,
as usual.
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Table 1. Estimation of several quantities discussed in this paper on the con-
crete slump dataset. The first column is the learning set size g. The values in
the last column being positive confirm the main finding of this paper: All values
are positive, which corresponds to the BIBD having smaller variance than ordi-
nary cross-validation.

Some values are not indicated, for the following reasons: For g = 50, there was
no BIBD available, so that the cells that required a BIBD had to remain empty.
For g =76 and g = 96, the condition n > 2g + 2 was not satisfied, so that there
was no unbiased variance estimator for V(x), and the cells requiring that variance
had to remain empty.

¢ | Kosp Kev * | V() | V(BIBD|(X,Y)) | V(CV) | V(CV|(X.Y)) | V(CV) - V(BIBD)
— V(CV|(X.Y))

—V(BIBD|(X,Y))

50 - 1-2=2136.09 | 19.5 - 21.77 2.27 -
76 101 26-4 =104 354 - 0.35 - 0.52 0.17
96 | 505 | 25-20=500 | 35.01 - 0.33 - 0.48 0.15

The first row of Table 5.3 displays the results for g = 50. The number of permutations
for estimation of the conditional variances, given the data, was 5000. The first column is
the leave-(n— g)-out estimator. Since for g = 50 there exists no Balanced Incomplete Block
Design, columns involving BIBDs had to remain empty in the first row. However, it was
possible to perform two-fold cross-validation, and estimating its permutation variance, as
explained in the preceding subsection. Finally, the estimator for the total variance of cross-
validation, was obtained by applying Formula (5.1), and presented in the sixth column.

Next, we investigated the sample size g = 76. The BIBD with parameters n = 101, g =
76,K = 101 was found by taking the complement of the symmetrical BIBD with n =
101,g = 25,K = 101, as explained in Section 6. Here, it was possible to estimate the
permutation variances, and plug them into Formula (5.2). The results confirms that the
BIBD in fact has lower variance than two-fold cross-validation.

Finally, for g = 96 a BIBD was obtained by executing the command

sage.combinat.designs.bibd.balanced_incomplete_block_design(101, 5).blocks()

in the SAGE numerical software (version 6.9). This yielded a BIBD with parameters
(n,g,A) = (101,5,1). The final BIBD was obtained by taking, again, the complement,
which had, therefore, parameters (101,96,456) (see chapter 6).

The design has a size of K = 505. We compared with 25-fold repetition of 20-fold
cross-validation. Thus, the cross-validation had size K = 25-20 = 500 which is sufficiently
close.

We also report the leave-(n — g)-out estimator, the value of the permuation variance of
the BIBD and of cross-validation. The difference, by Formula (5.2) is again the difference
of the total variances. Again, the value was positive, confirming again the main finding of
this paper, namely that the BIBD has smaller variance than cross-validation.

6. FINDING BALANCED INCOMPLETE BLOCK DESIGNS FOR CROSS-VALIDATION IN
PRACTICE

In the preceding chapters, we have collected both theoretical and practical evidence that
BIBD designs have small variance. Here, we want to show approaches to finding BIBDs
in practice.

For the convenience of the reader interested in the practical aspects of cross-validation,
let us re-state a definition of a cross-validation design:
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Definition 6. e A design for the sample size n is a collection (or multiset) . of
K subsets of the size 1 < g < n of the set {1,...,n} of observation indices (or
observations, for short). Each subset is called a block or learning set.

e A block design . is called Balanced Incomplete Block Design when the follow-
ing two conditions are satisfied:
(1) Each observation is contained in the same number r (where 1 < r < K) of
learning sets.
(2) Each pair of distinct observations is contained in the same number A of learn-
ing sets.

The second property is the “balancedness”. The design is called “incomplete” because
g<n.

In general, there is no algorithm to decide for a given constellation (n,g,K) whether
there exists a BIBD or not. However, in practice one is given the sample size n and would
typically like to quickly find a reasonable learning set size g and a design size K together
with an explicitly given BIBD for the constellation (n,K,r,g,A). In this section, we will
show that this is in general a feasible task.

For a given design &, we define the complementary design as the design on the same
sample size n where each block is replaced by the complement in the set {1,...,n}. Thus,
the complement of an (n, g, K)-design is an (n,n — g, K)-design. We denote the complement
of the design Z by %°. One can show [Stinson, 2004, 1.32] that the complement of a BIBD
is another BIBD. More precisely, the complement of a (n,K,r,g,A)-design is a design with
parameters

6.1) (n,K,K—r,n—g,K—2r+2).

Loosely speaking, the process of passing to the complementary design is the reversal of
the learning and testing roles of the observations.

A Steiner triple system is a BIBD for a constellation (n,K,r,g,A) withg=3and A = 1.
Thus, each block has size three, and is called a Steiner triple, or triple for short. The
following classical fact guarantees the existence of Steiner triple systems.

Theorem 3. A Steiner triple system exists if and only if the rest of the division of n by six
is one or three. The number K of triples is n(n — 1) /6. The number r of occurences of a
given observation is necessarily (n—1)/2.

Thus, n €7,9,13,15,19,21. By passing to the complementary design and using the fact
that the complement of a BIBD is another BIBD, we easily arrive at the conclusion:

Corollary 1. A BIBD for the constellation (n,K,g) where n and g = n— 3 are fixed and
K may be chosen exists if the rest of the division of n by six is one or three, namely the
complement of a Steiner triple system. Since the Steiner triple has n(n — 1)/6 blocks and
the number of blocks does not change when passing to a complement, we have K = n(n —
1)/6 as well.

This provides a convenient way for obtaining BIBDs in practice: By omitting observa-
tions, we can arrange for the condition on »n, and the learning set size g = n — 3 lends itself
for practical implementation.

More generally, there is a general construction due to Stinson [2004] for designs with
g=4org=>5,and A = 1. Taking the complement, we arrive at a general construction for
test set sizesn—g =4 orn—g =1>5. A BIBD for g = 4 exists when the rest of the division
of n by 12 is one or four, and a BIBD with g = 5 exists when the rest of the division by 20
is one or five. For instance, for the typical sample size range n € {100,...,200}, one can
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easily check that there are 46 values that satisfy one out of these criteria. Thus, in these
cases one can directly carry out a BIBD-design analysis. This may be compared with the
classical cross-validation, which is possible only if # is divisible by K. Thus, a BIBD has a
higher chance of being possible. By taking the complementary design, SAGE can be used
to construct a balanced incomplete block design whenever n — g < 5, i.e. for test set sizes
up to five, whenever it exists. In general, we tested for every n € {100,...,200} and every
n—g € {2,3,4,5} and every A whether a BIBD exists. The interested reader may find
details for the case k = 6 in Wallis [1996].

SAGE can construct a BIBD in all these cases where n—g <5, and often whenn—g > 5,
see Figure 2. This graph plots, for each sample size n on the horizontal axis, a test set size
n — g on the vertical axis with the property that a Balanced Incomplete Block Design can
be found with the command
sage.combinat.designs.bibd.balanced incomplete block design(n, n-g).blocks()
in the numerical software SAGE, v.6.9. Since one has to pass to the complementary design,
the output of the command specifies the indices of the test observations rather than of those
of the learning observations. For instance, there readily exists a BIBD with n = 101 and
n—g =15, and so on. Before taking the complement, these are BIBDs whose parameter A
is equal to one. After taking the complement, A is given by Formula (6.1). For this reason,
the plot is non-exhaustive: there will be more BIBDs for other values of A. The ones with
A = 1 are particularly easy to find, and sufficiently abundant, as the shows.

Sample size n vs. test set size n-g with an existing block design (non-exhaustive)

n-g

o
L

o

i ' | ' |
0 50 100 150 200

n

Figure 2. Plot of sample size n vs. test set size n — g for which a
BIBD exists.  Those designs are depicted which arise as complemen-
taries of designs with A = 1 and can easily be found using the command
sage.combinat.designs.bibd.balanced_incomplete_block design(n,
n-g) .blocks().
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SUPPLEMENT: AN EXEMPLARY COMPUTATION OF THE QUANTITIES Ttgl), éc, AND 0

Here, we consider the case where the distribution P is specified by: the random variable
X is univariate and distributed according to some unknown distribution Py, and the joint
distribution of (Y X) is given by the simple model ¥ = By + ;X + g, where £ ~ (0, 6?)

with By and 62 unknown. The goal is to compute the quantities ”L’d 78‘,‘6, and o, analytically.
Since Bp = E(Y — B1X), one has Bo = 12;‘:1 (Y; — B1X;) and I takes the form

F(17...,g;g+1):G((X1,Y1) (Xg,Y)’<Xg+1,Yg+1))

= _]ZY BiXi) + BiXg 1 — g+1)27

using the mean squared error as the loss function. By a slight abuse of notation, let us write
Z;:=Y;— B1X; = Bo + €. (Correctly, one would have to use yet another notation, say W;
instead of Z;; however, one would then obtain

G(Zl,...,Zg;Zg+1) = G(Wl,...,Wg;Wg+1)

as equality of random variables on the entire probability space which is why we use the
notation Z; in the first place.) Then, Z; is i.i.d. from Z ~ .4 (B, 62) and I can be written
in terms of these variables as

8 8
T(1.,g8+ 1) =G(Z1, . Z Ze1) = (&' Y. Zi—Zg1 ) = (g7 Y & — &)’
=

i=1

Therefore, I'is 62(1/g+ 1) times a chi-square variable with one degree of freedom. More-
over, ®=El=V(¢g 'Y¥ & —¢&41) = 0?(1 +g ). This formula is similar to Zhang
and Qian [2013, (9), (10)].

Recall that the covariance between two chi-square random variables can be computed as
follows. Let (P,Q) be a bivariate normal distribution with covariance matrix (Z IC’) and

mean (0,0)7. Then, Cov(P?, Q%) = 2b°. Hence, all 176(1') are non-negative in this case.

Some care has to be taken: the degree of ® is two rather than g+ 1; thus, Assumption 1 is
not valid in this case. However, in this chapter we will only make use of the non-degeneracy
of the associated U-statistic which is a slightly weaker statement than the assumption;
non-degeneracy still remains valid. On a related note, let s> denote the usual unbiased
variance estimator for 62, which is a U-statistic of degree two. Then one can check that
the symmetrized form Iy of " coincides with s?>(1 4 g~!), which also follows from the
uniqueness of the U-statistic for a regular parameter.

Another possibility to resolve the issue would be to add a negligibly small term of
degree g+ 1 to I'; in other words, the collection of choices of I" such that the assumption
is violated is a null set in some sense.

Letus abbreviate A=Y &, C=Y% ;. & D=5 {]" €. Then, A~ (dc?)'/2#(0,1),

C~ ((g—d)®) 24 (0,1),D ~ ((g—d)c?)'/2.#(0,1). Furthermore, EA* = 3(dc?)?

due to the normal kurtosis, EA?> = EA =EC=ED = 0,EA%> =do?,EC>* =ED> = (g —

d)o?.

Note that for type one, the overlap is only between the two learning sets, thus d = ¢, and

we only use the letter d. Making use of the mutual independences between A, C, D, &1,
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€g42—d» We obtain:
1 - _
@) = Cov((g7 (A+0) ~ 1) (67 (A+D) — exg2-c)) =
- _ 2

=2(Cov(g (A+C) —£g41.8 A+ D) —&3412-)) =

=c*[2g 40"
This is remarkable because there seem to be few places in the literature where the quantities
o, of a U-statistic are explicitly calculated. In particular, no variance formulae for the
leave-p-out error of linear regression are known, except in the “leave-one-out”-case.
For type two, we have d = ¢+ 1 and it is convenient to choose the following abbreviations:
A=Y{ & C=Y} &g andD= Ziz:g;z g;. Note that the symmetry between C and D
is lost and we have EC? = (g — c)o? and ED? = (g — ¢ — 1)o%. We prefer to perform the
index shift ¢+ 1 on the left hand-side of the equation in order to stress the analogy of the

computation with type one above. We then have
2 - . 2
©2) 2 =2Cov[(g7 (A+C) —gg11), (8 (A+ €11+ D) — &2 c11)]
= 2g %0+ c[-4g 0% +2¢ 26"

For type three, we have d = ¢+ 2 and it is convenient to choose the following abbreviations:
A and D as above, but C = Zf & We then have

TL(i)z =2Cov[(g " (A+ecr1+C) —&11), (8 (A+ €1 +D) — £c+1)]2

(6.3) 21 —4 4 -3 4 -2 4
=c"[2¢ 70" +c[-8g 0" +8¢ “c".

. 2g—c+1 .
For type four, we abbreviate A = Y. &,C=Y{ . &, and D=};% 15" ¢. Using that
]Es; = 0 because the third central moment of a normal random variate vanishes, we
obtain:

W = 2Cov[(g7 (A+C) —g11), (g (A+D) —ge11)]°
= *2g %0 +cldg 20 + 20

By (3.5), the expressions for the quantities T as functions of ¢ yield for &:

2 2 2.2
c 2c¢c 2c¢n 4en 2n cn
éc:264 c—2g+n+?—§+ g3 —

g2

+7
g &
By (3.12), we have
o =20*[~2g+n+2ng" "]
2 4n 1 2n n?

o =20-"-S+5+5+5+1
[g 2 g P g }
o = 40* [g’z + an’3 +n2g’4]

oy=0, y>3.
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