Abstract
We propose an interactive approach for post-processing serial episodes mined from sequential data, i.e. time-stamped sequences of events. The strength of the approach rests upon an interactive interpretation that relies on a web interface featuring various tools for observing, sorting and filtering the mined episodes. Features of the approach include interestingness measures, interactive visualization of episode occurrences in the mined event sequence, and an automatic filtering mechanism that remove episodes depending on the analyst’s previous actions. We report experiments that show the advantages and limits of this approach in the domain of melodic analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Event types are represented with integer values.
- 3.
Here, the notes have 4, 3 and 1 beats, and the corresponding note values are respectively whole note, dotted half note and quarter note.
- 4.
The computation of the closure property in Transmute is based on the number of occurrences of a serial episode. It is not detailed in this paper.
References
Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in databases: an overview. AI Mag. 13(3), 57–70 (1992)
Holzinger, A.: Human-computer interaction and knowledge discovery (HCI-KDD): what is the benefit of bringing those two fields to work together? In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319–328. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40511-2_22
van Leeuwen, M.: Interactive data exploration using pattern mining. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 169–182. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43968-5_9
Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)
Vreeken, J., Leeuwen, M., Siebes, A.: KRIMP: mining itemsets that compress. Data Mining Knowl. Disc. 23(1), 169–214 (2011)
Lam, H.T., Mörchen, F., Fradkin, D., Calders, T.: Mining compressing sequential patterns. Stat. Anal. Data Mining 7(1), 34–52 (2014)
Bertini, E., Lalanne, D.: Surveying the complementary role of automatic data analysis and visualization in knowledge discovery. In: Proceedings of the ACM SIGKDD Workshop on Visual Analytics and Knowledge Discovery: Integrating Automated Analysis with Interactive Exploration, pp. 12–20. ACM (2009)
Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: IEEE Symposium on Visual Languages. Proceedings, pp. 336–343. IEEE (1996)
Gotz, D., Wang, F., Perer, A.: A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data. J. Biomed. Inform. 48, 148–159 (2014)
Stahl, F., Gabrys, B., Gaber, M.M., Berendsen, M.: An overview of interactive visual data mining techniques for knowledge discovery. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 3(4), 239–256 (2013)
Dzyuba, V., Van Leeuwen, M., Nijssen, S., De Raedt, L.: Active preference learning for ranking patterns. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 532–539. IEEE (2013)
Bie, T.: Subjective interestingness in exploratory data mining. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 19–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41398-8_3
Boley, M., Mampaey, M., Kang, B., Tokmakov, P., Wrobel, S.: One click mining: interactive local pattern discovery through implicit preference and performance learning. In: Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics, pp. 27–35. ACM (2013)
Tatti, N.: Discovering episodes with compact minimal windows. Data Min. Knowl. Discov. 28(4), 1046–1077 (2014)
Nanni, M., Rigotti, C.: Extracting trees of quantitative serial episodes. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 170–188. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75549-4_11
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1, 259–289 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Fuchs, B., Cordier, A. (2018). Interactive Interpretation of Serial Episodes: Experiments in Musical Analysis. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds) Knowledge Engineering and Knowledge Management. EKAW 2018. Lecture Notes in Computer Science(), vol 11313. Springer, Cham. https://doi.org/10.1007/978-3-030-03667-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-03667-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03666-9
Online ISBN: 978-3-030-03667-6
eBook Packages: Computer ScienceComputer Science (R0)