
What’s the Optimal Performance of Precise
Dynamic Race Detection? – A Redundancy
Perspective∗

Jeff Huang1 and Arun K. Rajagopalan2

1 Texas A&M University, US
jeff@cse.tamu.edu

2 Texas A&M University, US
arunxls@tamu.edu

Abstract
In a precise data race detector, a race is detected only if the execution exhibits a real race.
In such tools, every memory access from each thread is typically checked by a happens-before
algorithm. What’s the optimal runtime performance of such tools? In this paper, we identify
that a significant percentage of memory access checks in real-world program executions are often
redundant: removing these checks affects neither the precision nor the capability of race detection.
We show that if all such redundant checks were eliminated with no cost, the optimal performance
of a state-of-the-art dynamic race detector, FastTrack, could be improved by 90%, reducing its
runtime overhead from 68X to 7X on a collection of CPU intensive benchmarks. We further
develop a purely dynamic technique, ReX, that efficiently filters out redundant checks and apply
it to FastTrack. With ReX, the runtime performance of FastTrack is improved by 31% on average.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Data Race Detection, Dynamic Analysis, Concurrency, Redundancy

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.15

1 Introduction

In recent years, the performance of precise Happens-Before (HB) based dynamic race detectors
has greatly improved thanks to techniques such as FastTrack [12]. For many small-scale
programs their performance is now close to that of the imprecise LockSet-based tools [27].
This is primarily due to the recent epoch-based advancement [12] that greatly cuts down
the size of the vector clocks from O(Nthreads) to almost O(1), where Nthreads is the number
of threads. However, it remains difficult to scale these tools to large software applications
with a large number of threads. The reason is that these tools must still check races and
maintain states for all memory accesses, the complexity of which is in O(Nevents), i.e., the
number of memory accesses. Because Nevents can be as large as the dynamic instruction
count, it essentially dominates the race detection scalability. In our experiments, for instance,
FastTrack incurs 80X runtime slowdown on the Java Grande benchmark suite [1].

What is the optimal performance of precise dynamic race detection? Is the FastTrack
algorithm the best we can do? Due to the significance of race detection, this question is highly
important to answer and in fact has attracted many researchers [6, 20, 34, 10, 30, 14, 17].
One promising way to gain further performance is to reduce the size of Nevents. Along this

∗ This work was supported by a Google Faculty Research Award and NSF award CCF-1552935.

© Jeff Huang and Arun K. Rajagopalan;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 15; pp. 15:1–15:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


15:2 What’s the Optimal Performance of Precise Dynamic Race Detection?

for(i=0;i<10;i++){ 
lock A 
write x 
unlock A 

}

T1

1

for(i=0;i<10;i++){ 
lock B 
write x 
unlock B 

}

T2

2

Figure 1 An example exhibiting redundancy.

direction, previous research has explored two ideas: dynamic sampling [6, 20, 34] and static
analysis [26, 14, 10, 4]. However, none of them is sound or precise. Dynamic sampling
techniques generally reduce the race detection capability because sampling may lead to
missing races. While static analysis can be used to coalesce multiple checks [26, 10, 4] or
prune memory checks that no race will be found [14], it is hard to obtain a sound static
analysis in practice, especially for large complex applications with dynamic features, e.g.,
dynamic code generation and reflection; hence static analysis may lead to both missing races
and imprecise results.

In this paper, we attempt to answer this question from another perspective: redundancy
– which also aims to reduce Nevents, but is both sound and complete. Our key observation
stems from the fact that most dynamic memory accesses in real-world program executions
are typically from the same program location, and they often lead to the same race because
they are caused by repeated executions of the same racy instruction. Therefore, repeated
memory accesses that do not reveal any new races can be skipped by the race detection tool,
since removing them does not affect the capability nor precision of race detection. We term
such memory accesses as redundant events.

Figure 1 shows a motivating example. The two threads T1 and T2 both write to a shared
address x. T1 acquires lock A before writing to x, while T2 acquires lock B.

Because T1 and T2 do not share a common lock while writing to x, there exists a data race
between À and Á. Since the racy statements exist inside the loops that run 10 times, a race
detector will check for races each time the event is generated. However, to detect this race it
suffices to check only one event for each À and Á and skip all the rest events. The rest events
are redundant because they would not lead to any new unique race to be discovered. If we
can remove these redundant events, the performance of race detection may be significantly
improved, because for redundant events the race detection tools do not need to check races
and to track their states. This optimization is tremendous in modern day multithreaded
programs, as this type of redundancy is prevalent due to the single-process-multiple-data
(SPMD) architectural design.

On the surface, this problem seems simple to solve by removing the events from the
same program location. However, a treatment as such may remove important dependency
information and produce incorrect results. For instance, consider another example in Figure 2.
The example is slightly modified from that in Figure 1, but it contains additional wait and
notify statements in the loops. There is still a race between À and Á (starting from the
second loop instance of À). However, if we perform race checks for each lexical location just
once (i.e., check only the first two writes at À and Á and ignore the rest), the race will be
missed, because the first write by T1 happens before the first write by T2 (incurred by the
wait and notify statements).

To precisely and optimally capture such redundant events, we introduce concurrential
equivalence, a new criterion that characterizes redundancy based on purely the dynamic



J. Huang and A.K. Rajagopalan 15:3

for(i=0;i<10;i++){ 
lock A 
write x 
notify g 
unlock A 

}

T1

1

for(i=0;i<10;i++){ 
lock B 
wait g 
write x 
unlock B 

}

T2

2

Figure 2 The race between À and Á would be missed if we only check events from each lexical
location once.

information associated with each event, without any static information of the program such
as the data flow or control flow. Specifically, two events are concurrentially equivalent if they
have the same concurrency context – a history of inter-thread happens-before context of the
thread that performs the event. We prove that concurrential equivalence is sound and, for
precise dynamic race detection, if there are two or more lexically-identical concurrentially
equivalent events that access the same memory location, it is sufficient to keep any one copy
of them for at most two threads and safely drop all the others.

Moreover, we show that such redundant events pervasively exist in both popular bench-
marks and real-world programs, typically accounting for more than 99% of the events in the
execution. If all these redundant events are removed, the (hypothetical) optimal performance
of race detection can be improved by 90% for FastTrack, reducing its runtime overhead
from 68X to 7X on a collection of CPU intensive benchmarks. For most of the Java Grande
benchmarks, the FastTrack runtime overhead could be improved by as much as 95%, reducing
the overhead from 80X to 3X only.

We further develop a dynamic technique, called ReX, to efficiently identify redundant
events. The challenge is how to achieve efficiency while still maintaining both precision and
soundness. We propose a Trie-based synchronization-free algorithm that on average identifies
97% redundant events. By running it as a filter before FastTrack, ReX improves the overall
runtime performance by 31%. To further balance the runtime performance and effectiveness
of redundancy identification, we have also explored a relaxation of ReX for the imprecise
LockSet-based algorithms, which improves the performance of FastTrack by 32%.

In summary, this paper makes the following contributions:

We present the first study of race detection performance from the perspective of redund-
ancy and propose a new criterion that precisely and optimally characterizes redundant
events for precise HB-based dynamic race detection.

We show that redundancy pervasively exists in real-world program executions and
eliminating redundancy has the potential to improve the performance of the state-of-the-
art FastTrack race detector by 90%.

We present a generalized algorithm, ReX, to remove redundant events dynamically
without affecting the soundness or precision of the race detector, nor changing the race
detection algorithm. We also present an optimization of ReX for the LockSet-based race
detection algorithm.

We integrate ReX with FastTrack, resulting in significant performance improvement on
popular benchmarks.

ECOOP 2017



15:4 What’s the Optimal Performance of Precise Dynamic Race Detection?

T0 Ti=1:10

if(i<=5) lock A 
write x 
if(i<=5) unlock A

for(i=1:10) 
read x 

for(i=1:10){ 
lock A 
write x 
unlock A 

}

1

2

3

Figure 3 Intra- and inter-thread event redundancies.

2 Overview

In a precise dynamic race detector, a complete program execution trace, i.e., a comprehensive
sequence of critical events (memory accesses and thread synchronizations) is assumed to be
observed. In general, no critical event should be missing. Otherwise, the detected races may
be imprecise (i.e., false positives) or a real race may be missed. Nevertheless, a critical event
may be redundant because it does not directly reveal any new races nor does it indirectly
affect other new races to be detected. In particular, in a real-world program execution, we
often observe multiple races between the same pair of lexical statements (i.e., same file, same
class, same line and same column). However, just a single unique pair is enough to alert the
user to a race between these two statements; the other warnings are superfluous and can
be ignored. The race detector would need to filter out those superfluous races so that only
unique race reports are sent to the user (to reduce the effort of the user). We note that, in
practice, this functionality could be achieved for any race detector with an offline step that
checks for equivalencies (like the ThreadSanitizer [2] dynamic detector does).

More pressingly, the additional computation required by detecting those superfluous races
negatively impacts the runtime performance of race detection, since additional expensive
operations must be performed, e.g., vector clock comparison and join, and memory operations
for storing and loading the states associated with the memory accesses in a superfluous race.

We refer to an event in a trace as a redundant event if its exclusion from the trace does
not lead to any missed races or false alarms by the same precise HB-based race detector.
In other words, a redundant event does not reveal any additional useful information to the
user of the race detector except negatively impacting the runtime performance. We next
illustrate two kinds of redundant events (intra- and inter-thread redundancy) via an example
in Figure 3. The main thread T0 runs a loop inside which it reads and writes to a shared
address x for 10 times. The shared lock A is used to protect the writes to x at Á, but not
the reads to x at À. Thread Ti (i = 1, 2, . . . , 10) writes to this shared address protected
conditionally through lock A for the first five threads. The remaining five threads write to x
without previously acquiring lock A.

Consider the first iteration of the first loop. The read of x from À by Thread T0 races
with the write from Â (by any thread from T1 to T10). This pair of statements are the only
race involving À in the program. Subsequent iterations of À all serve to expose the same
lexical pair as a race and can be ignored (i.e., intra-thread redundancy). Consider the writes
to x from Á. Among the threads Ti, although all of them are different in their execution,
the traces by T1-T5 are identical, and the traces by T6-T10 are identical. Because T6-T10 do
not acquire the lock before writing to x at Â, it results in two more races: a race with the
write to x from Á by T0, and a race between two instances of Â by any two threads from



J. Huang and A.K. Rajagopalan 15:5

T1-T10. It is easy to see that four of the second five writes from Â by T6-T10 are redundant
(i.e., inter-thread redundancy), because the existence of any one of the five is sufficient for
precisely detecting all the three races: (À,Â), (Á,Â) and (Â,Â).

How about the writes from Á and the first five writes from Â by T1-T5? Is any of them
redundant? For this example, it is tempting to conclude that most of them (except one
write for each Á and Â) are redundant as well. However, they are not redundant from
the perspective of a precise HB-based dynamic race detector, when the future execution
is unknown. More specifically, these writes are protected by a lock; the lock operations
introduce happens-before edges as required by the HB algorithm (albeit lock regions are
commutative). These happens-before edges result in different happens-before relations for
these writes, i.e., between these writes with possible future events, which may or may not
produce new races depending on the specific happens-before relation. Therefore, because the
future is unknown, we cannot remove any one of these writes. Interestingly, for an imprecise
LockSet-based race detection algorithm [27], most of these writes are redundant, because
their locksets are identical. We will elaborate this point more in Section 4.

From the above example, we can see that identical program location is only a necessary
condition, but not the sufficient condition to determine if an event is redundant or not. A
key contribution of this work is a criterion (called concurrential equivalence) that captures
redundant events without any loss of race-detection ability or precision, for both intra-thread
and inter-thread redundancies. Before introducing our criterion, we first need a precise
definition of the HB-based race detection algorithm.

2.1 Happens-Before Race Detection
A happens-before algorithm [12], originated from Lamport’s happens-before definition [18]
for distributed systems, takes a dynamic trace (observed so far of a running program) and
can precisely detect the first race. To detect the second or more races precisely, the algorithm
needs a small extension that adds a happens-before edge between the two events in the
first race. Our discussion in this paper concerns only the happens-before algorithm without
extension.

To formally define the event redundancies, we need a model of a general program execution
trace. Similar to other work [28, 17], we consider an event e in a program trace τ to be one
of the following:

MEM(t, a, m): A memory access event, where t refers to the thread performing the
memory access, a can be one of Read/Write event and m the memory address being
accessed.
ACQ(t, l): A lock acquire event, where t denotes the thread acquiring the lock and l is
the address of the acquired lock.
REL(t, l): A lock release event, where t denotes the thread releasing the lock and l is
the address of the released lock.
SND(t, g): A message sending event, where t denotes the thread sending message with
unique ID g.
RCV(t, g): A message receiving event, where t denotes the thread receiving message
with unique ID g.

For volatile accesses, they can be treated as MEM accesses enclosed by ACQ and REL
events with unique lock addresses. For example, a write access to a volatile variable m
corresponds to three consecutive events ACQ(t,l*)-MEM(t,W,m)-REL(t,l*), in which l* is
unique per dynamic memory location.

ECOOP 2017



15:6 What’s the Optimal Performance of Precise Dynamic Race Detection?

The SND and RCV events may be defined specifically to a language. For example, for
Java, SND(t,g) and RCV (t,g) can be one of the following:

If Thread T1 starts T2, it corresponds to a SND( T1, g) and RCV (T2, g).
If Thread T1 calls T2.join(), SND( T2, g) and RCV (T1, g) are generated once T2 termin-
ates.
If Thread T1 calls o.notify() signaling a o.wait() on Thread T2, this corresponds to a
SND(T1, g) and RCV (T2, g).

For other complex synchronizations such as C11/C++11 atomic accesses, they can be
treated conservatively as REL/SND operations each with a unique ID, such that they are
always happens-before-ordered with the other events.

In addition, we associate each event with a static attribute loc, denoting the program
location that generates the event.

Having defined a standard model of a program trace, we now formally define the happens-
before (HB) relation.

Happens-Before Relation. The HB relation ≺ over events in a trace τ is the smallest
relation such that:

If a and b are events from the same thread and a occurs before b in the trace, then a ≺ b.
If a is a type of SND event and b is the corresponding RCV event, then a ≺ b.
If a is a type of REL event and b is the next ACQ event on the same lock, then a ≺ b.
This condition can be relaxed in a LockSet-based algorithm, which we will explain in
Section 4.
≺ is transitively closed.

We note that the HB relation ≺ is a partial order over the trace. For any two events
in the trace, ei and ej , either ei ≺ ej is true or ¬(ei ≺ ej) is true. Different from other
algorithms [23, 15] that involve may happen-before, for an HB-based race detection algorithm,
there is no may-happen-before relation.

To ease the presentation, we use ei||ej to denote that ei and ej have no happens-before
relation between each other: ¬(ei ≺ ej) ∧ ¬(ei ≺ ej). In other words, ei||ej means ei and
ej can happen concurrently (if not in the observed execution, but can always happen in a
certain execution of the same program).

Happens-Before Algorithm. The HB relation is usually checked by the use of vector
clocks [21] or epoch-based clocks [12]. Two conflicting MEM accesses a and b (i.e., Read/Write
events, at least one is a Write, accessing the same memory address), are determined to be in
a race if they can happen concurrently: a||b.

2.2 Concurrential Redundancy
Having defined the happens-before algorithm, we are ready to define redundant events:

I Definition 1 (Redundant Event). Let HB-RaceDetect(τ) be the result of a precise
dynamic HB-based algorithm running on τ , an input execution trace observed so far. HB-
RaceDetect(τ) is either ε (if there is no race in τ) or (l1,a1,l2,a2), if there exist racing accesses
e1||e2 in τ such that li=loc(ei) and ai = access(ei) and l1 < l2 (the location ordering is for
symmetry breaking). An event e is redundant iff HB-RaceDetect(τ) = HB-RaceDetect(τ\e).



J. Huang and A.K. Rajagopalan 15:7

I Definition 2 (Concurrential Equivalence). The key observation behind concurrential
equivalence is that, for two MEM events ei and ej , their inter-thread happens-before relation
can determine their equivalence. Regardless of which thread(s) they are from, ei and ej are
concurrentially equivalent if they satisfy the following conditions:
1. they share the same program lexical location (i.e., loc(ei)=loc(ej)) and have the same

access type (i.e., both are reads, or both are writes);
2. they access the same dynamic memory location;
3. they have the same inter-thread HB relations with events from any other thread that is

different from ti or tj . More formally, ∀ ek, tek
6= ti ∨ tek

6= tj , such that ek ≺ ei ⇐⇒
ek ≺ ej and ei ≺ ek ⇐⇒ ej ≺ ek.

For Condition 3, we note that there are two possible cases: 1) ti = tj and 2) ti 6= tj . As
long as tek

is different from any of them, the condition must be held. We also note that from
the two ⇐⇒ conditions, we can derive ek||ei ⇐⇒ ek||ej .

With concurrential equivalence, we can formally prove the following theorem:

I Theorem 1 (Concurrential Redundancy). An event e is redundant if there already
exists one concurrential equivalent event from the same thread, or two from different threads.

Proof. The key insight for the proof is that a race involves only two events from two different
threads. Let us assume two concurrentially equivalent events ei and ej , and consider an
arbitrary event ek. If ei and ej are from the same thread, and if ek and ei form a data race,
then ek and ej must be a race too. The reason is that ei and ej have the same inter-thread
HB relation, and ek must be from a different thread. Hence, either ei or ej is redundant. On
the other hand, if ei and ej are from different threads, and if ek and ei form a race, there are
two possibilities. One is that ek is from a third thread different from that of ei and ej . In
that case, either ei or ej is redundant, because ek would race with ej too. The other case is
that ek is from the same thread as ej . In that case, neither ei nor ej is redundant. However,
for any other event ew that is concurrentially equivalent to ei and ej , ew must be redundant.
The reason is that ew would either form a race with ek (if it is from a thread different from
that of ek), or is redundant with ej (if it is from the same thread as ek).

Meanwhile, we can prove that no new races would be reported if such an event e is removed
from the trace. Let us assume a certain new race (ei, ej) is reported in τ\e but not in τ .
Then it must be the case that in τ\e, ei ≺ ej ∨ ej ≺ ei, but in τ , ei||ej . The only possibility
is that ei ≺ e ≺ ej ∨ ej ≺ e ≺ ei. However, because in τ\e, there should exist an event e′

that is concurrentially equivalent to e, then we should also have ei ≺ e′ ≺ ej ∨ ej ≺ e′ ≺ ei.
This contradicts to the assumption that (ei, ej) is a race. J

We can hence use Theorem 1 to identify redundant events. But is it optimal? Can we
safely remove any more events from the trace without affecting the race detection results?
Interestingly, Theorem 1 only defines optimal equivalence between events, but it is not
optimal for defining redundancy. More specifically, we can improve Theorem 1 to capture
more redundant events by relaxing Condition 3 with the “HB-subsume” relation.

I Definition 3 (HB-subsume). An event ei HB-subsumes (2) ej if the HB relation of ej is
a subset of ei for events from any other thread that is different from ti or tj . More formally,
if ei 2 ej then ∀ ek, tek

6= ti ∨ tek
6= tj , such that ek ≺ ei =⇒ ek ≺ ej and ei ≺ ek =⇒ ej

≺ ek.

Comparing the conditions in HB-subsume with that in Condition 3, the difference is that
⇐⇒ is changed to =⇒. That is, the inter-thread HB relations of ei and ej need not to be

ECOOP 2017



15:8 What’s the Optimal Performance of Precise Dynamic Race Detection?

equivalent, but is relaxed to be a subset relation. The key insight is that if ei 2 ej , then ej

only represents a subset of the happens-before information represented by ei; hence ei can
replace ej for race detection. Similarly, we can define concurrential-subsume equivalence and
prove Theorem 2:

I Definition 4 (Concurrential-subsume Equivalence). For two MEM events ei and ej ,
ej is concurrentially-subsumed by ei if:
1. they share the same program lexical location and have the same access type (i.e., both

are reads, or both are writes);
2. they access the same dynamic memory location;
3. ei 2 ej .

I Theorem 2 (Optimal Concurrential Redundancy). An event e is redundant if there
already exists one concurrential-subsuming equivalent event from the same thread, or two
from different threads.

Proof. The proof is similar to that of Theorem 1. The only difference is changing concurrential
equivalence to concurrential-subsume equivalence. Meanwhile, since a race involves at least
and at most two events, it is impossible to further remove any more such events, otherwise
a certain race may be missed. Hence, we can also prove that Theorem 2 is optimal for
characterizing concurrentially-redundant events. J

We can hence use Theorem 2 to precisely and optimally identify concurrentially-redundant
events. To clarify, we note that Theorem 2 only considers those events that may be involved
in data races but cannot introduce new races. We do not consider redundant events that can
never participate in any data race, e.g., events that are always happens-before-ordered before
some event for each thread. It is possible to further remove events beyond our definition
of concurrential equivalency. Nevertheless, that would require checking the happens-before
relation between events, which is as expensive as running a full HB algorithm.

3 The ReX Algorithm

For dynamically generated event streams from a running program, checking the first two
conditions of concurrential-subsume equivalence is easy: lexical equivalence can simply check
the originating program location of the event, access types can be recognized easily during
instrumentation, and dynamic memory location is available at runtime. Checking the third
condition (i.e., 2) however, if done naively, would prove prohibitively expensive, especially
when the algorithm needs to be run online during program execution. To efficiently check
the 2 condition, we introduce a new concept called concurrency context:

I Definition 5 (Concurrency Context). The concurrency context of a thread t, Γt,
encodes the history of SND and REL events observed by t, with the thread attribute t
ignored. The concurrency context of an event e generated by thread t is the value of Γt at
the time e is observed.

It is easy to see that if two events ei and ej have the same concurrency context and ei

appears before ej , then they must satisfy the ei 2 ej condition, because only SND and REL
introduce outgoing inter-thread HB edges; for all the other event types (i.e., RCV, ACQ
andMEM ), they only introduce intra-thread or incoming HB edges.



J. Huang and A.K. Rajagopalan 15:9

Algorithm 1 ReX(e)
1: e← input event
2: t = e.getThread

3: loc = e.getLocation

4: Γt // concurrency context of thread t
5: Θloc // concurrency history at location loc
6: switch e do
7: case MEM:
8: if CheckRedundancy(t, Θloc, Γt) then
9: discard e
10: else
11: advance e
12: end if
13: case REL:
14: Γt.add(e.l)//add the lock l
15: advance e
16: case SND:
17: Γt.add(e.g)//add the message g
18: advance e
19: case Other:
20: advance e

Finally, we introduce the concept of concurrency history for a particular lexical location:

I Definition 6 (Concurrency History). The concurrency history at a static program
location loc, Θloc, stores the union of Γt of all threads t that have accessed this location.

The concurrency history Θloc can be used to filter out redundant events from location
loc. Moreover, since the concurrency contexts of different events from the same location
exhibit strong temporal locality due to stack based computational model of programs, a
prefix sharing data-structure such as trie is ideal for storing Θloc. This results in compact
storage and fast retrieval in our design of ReX.

We design ReX as a filter pass over the event stream generated by the program execution.
It is generic by design and can be applied to any dynamic race detectors and it is sound for
the precise HB-based race detection algorithms such as FastTrack. Algorithm 1 provides a
high-level overview of how ReX applies the redundancy filters. It updates Γt as events stream
by. The calls discard and advance indicate when ReX decides that the event is redundant
and discard it or advance it to the race detector, respectively. The MEM events are handled
separately from the other types of events:

1. MEM: Memory access events, both read and write are checked for redundancy (Al-
gorithm 2). If this call returns true, the event is redundant and it is filtered.

2. SND and REL: These events always append to Γt their unique ID g or l.
3. RCV and ACQ: These events are not processed but just advanced to the race detector.

For each MEM event, the CheckRedundancy function determines its redundancy by
checking the corresponding concurrency history Θloc and the current concurrency context
Γt of the thread. Recall Theorem 2 that an event is redundant if there already exists one
concurrential-subsuming equivalent event from the same thread, or two from different threads.

ECOOP 2017



15:10 What’s the Optimal Performance of Precise Dynamic Race Detection?

Algorithm 2 CheckRedundancy(t, Θloc, Γt)
1: stack ← getStack(Θloc,Γt)//get the stack associated with the concurrency context and

location
2: if stack is empty then
3: Θloc.add(Γt)
4: return false
5: else if stack.contains(t) then
6: return true
7: else if stack.size = 1 then
8: stack.add(t)
9: return false

10: else if stack is full then
11: return true
12: end if

To check this condition, each node in Θloc contains a bounded stack of size 2 that is used to
keep track of the number of concurrential equivalent events seen so far. If the stack is full,
new events having the same Γt are filtered out since they are redundant. The elements of the
stack denote the threads that have contributed to the particular concurrency context. The
first step is to check the stack corresponding to the current thread’s concurrency context.
Based on the contents of this stack, there are four cases to consider:

1. Stack is empty: This implies that this particular concurrency context was not seen in
any of the accesses so far, hence the event is not redundant. We proceed to add Γt into
Θloc for future accesses, where t is the thread ID of the current event e and loc is the
program location of e.

2. Stack contains t: This case falls in the category of intra-thread redundancy, so e and
can be eliminated.

3. Stack does not contain t and is of size 1: Add t to the stack.
4. Stack is full: This case falls in the category of inter-thread redundancy, so e can be

eliminated.

Synchronization-free Implementation. Algorithm 1 is simple and mostly straight-
forward to implement. The only problem is that the algorithm itself is multithreaded and the
trie for storing each concurrency history Θloc is a shared data structure. Multiple threads
may concurrently access Θloc with the same concurrency context Γt and attempt to store
a new stack into the trie for the same entry Γt if a stack is not available for the entry
(at line 2 in Algorithm 2). To correctly implement the algorithm, this operation must be
synchronized. However, a synchronized implementation would slow down ReX significantly,
especially for programs with a large number of threads running on multicore processors and
for this scenario, the synchronization operation is performed for every check.

We develop a synchronization-free implementation that does not use any locks to protect
the new stack store operation. Specifically, for each node in the trie, we maintain a hashmap
from the current concurrency context ID (message g or lock l) to its children nodes. When a
synchronization event with ID x is generated, the corresponding thread checks the hashmap
to return a child node for x and creates a new node if not available. Multiple threads are
allowed to check the hashmap and create new entries in it without synchronization. Because
there is no synchronization, two threads may create two new nodes for the same concurrency
context ID, and one of them would be overwritten by another.



J. Huang and A.K. Rajagopalan 15:11

for(i=1;i<=3;i++) 
fork Ti 

for(i=1;i<=3;i++){ 
read x 
lock Li 
write x 
unlock Li 

}

1

T0

write x 
lock Li 
write x 
unlock Li

3

Ti

4

2

(a)

e1: SND(t0, g1) 
e2: SND(t0, g2) 
e3: SND(t0, g3) 
e4: MEM(t0, R, x) 
e5: ACQ(t0, L1)  
e6: MEM(t0, W, x) 
e7: REL(t0, L1) 
e8: MEM(t0, R, x) 
e9: ACQ(t0, L1)  
e10: MEM(t0, W, x) 
e11: REL(t0, L1) 
e12: MEM(t0, R, x) 
e13: ACQ(t0, L1)  
e14: MEM(t0, W, x) 
e15: REL(t0, L1)

e16: RCV(t1, g1) 
e17: MEM(t1, W, x) 
e18: ACQ(t1, L1) 
e19: MEM(t1, W, x) 
e20: REL(t1, L1) 
e21: RCV(t1, g2) 
e22: MEM(t1, W, x) 
e23: ACQ(t1, L2) 
e24: MEM(t1, W, x) 
e25: REL(t1, L2) 
e26: RCV(t3, g3) 
e27: MEM(t3, W, x)  
e28: ACQ(t3, L3) 
e29: MEM(t3, W, x) 
e30: REL(t3, L3)

1

2

3

4

1

2

1

2

3

4

3

4

(b)

Figure 4 A program exhibiting event redundancies and a serialized execution trace.

The loss of one node causes the corresponding stack associated with the concurrency
context ID x to miss one entry, which means that a redundant event may be missed. However,
since the chance for two threads to check the hashmap with the same concurrency context
ID at the same time is very small, this treatment rarely misses redundant events in practice
(in our extensive experiments we only observed one or two such cases out of every one
million events on average). Moreover, this treatment is sound that it does not miss any
non-redundant events.

3.1 Example
We use the example in Figure 4 to illustrate ReX. This program in (a) contains two loops:
the first spawns three threads, T1,2,3, and the second performs a read at program location
À, followed a lock region on Li protecting a write at Á in each loop for i = 1, 2, 3. Threads
T1,2,3 are all identical except in the lock addresses used to guard the write at Ã. The write at
Â is unguarded. A trace corresponding to a serialized execution of the program that executes
T0 → T1 → T2 → T3 is shown in (b). If this trace is given to a precise HB-based race detector,
a race between e14 and e17 will be detected as the first race: In fact, if all possible thread
schedules are explored, a powerful race detector such as RVPredict [15] can detect 45 races in
total in this program: (e(4,8,12), e(17,19,22,24,27,29)), (e(6,10,14), e(17,22,17)), (e6, e(24,29)), (e10,
e(17,29)), (e14, e(17,24)), (e17,19, e(22,24,27,29)), and (e22,24, e(27,29)). However, only 7 of them
have unique lexical locations: (À,Â), (À, Ã), (Á, Â), (Á, Ã), (Â, Â), (Â, Ã) and (Ã, Ã).
The rest 38 races are superfluous and should be removed from the race reports. We would
like to use ReX to identify those redundant events that lead to these superfluous races.

Figure 5 illustrates how ReX works for this example. There are four program locations of
interest, marked by À-Ã.

Location À: Following Algorithm 1, the three events e1,2,3 first add their unique message
ids into Γt. The read e4 by T0 is then added to the stack associated with the concurrency

ECOOP 2017



15:12 What’s the Optimal Performance of Precise Dynamic Race Detection?

Root

g1

g3

Root

L1 L2 L3

1
T0

g2

L1
2
T0

1
T0

L2
2
T0

1
T0

L3

3
T1
T2

T3
dropped

4
T1

4
T2

4
T3

2
T0

Figure 5 Trie states after applying ReX on the trace in Figure 4b.

context g1− g2− g3. Note that the lock acquire e5 does not add anything to Γt, but the
lock release e7 appends L1 to it. Similarly, the read e8 by T0 is added to the stack associated
with the concurrency context g1− g2− g3− L1. At the end of three iterations, e4,8,12 are
added to the stacks associated with three different concurrency contexts. The stack at each
of these locations contains the single thread T0 and thus, none of the accesses is dropped.

Location Á: Similar to that of À, e6,10,14 are added to three different stacks, because the
lock acquire events extending the concurrency context with L1, L2 and L3.

Location Â: The first two threads T1 and T2 access this location and get added into the
stack. The third thread T3 is however filtered since the stack is already full, exhibiting
inter-thread redundancy.

Location Ã: Similar to how each T0 acquires a lock, the writes this location are each
guarded by a different lock. Thus, the thread ID of each write is added to a different stack.

For the example above, the only redundant event dropped by ReX is the third event from
location Â. Keen readers may wonder why we cannot drop some of the other events (e.g.,
the second and the third read events from location À). The fundamental reason is that these
events are not redundant for a precise HB-based race detection algorithm. For instance, it
may appear that the second read event e8 from À is redundant to its first read event e4; but
according to the HB algorithm, the lock release event e7 introduces an outgoing HB edge,
resulting in a different inter-thread HB relation for e8. Hence, a possible future event, say
e100, may race with e8 but not e4.

We next introduce a relaxation of ReX that is unsound for the precise HB-based algorithm,
but is sound for the LockSet algorithm. It has the power to identify all those seemingly
redundant events in this example. However, in principle, because the LockSet algorithm
is unsound, this relaxation of ReX may result in missing real races. Nevertheless, in our
experiments we rarely observe such cases.



J. Huang and A.K. Rajagopalan 15:13

Root

g1

g3

Root

1
T0

g2

3
T1
T2

e27
dropped

L1 L2 L3

4
T1

4
T2

4
T3

2
T0

L1 L2 L3

2
T0

2
T0

e8,e12
dropped

Figure 6 Trie states with the LockSet optimization for the trace in Figure 4b.

4 The LockSet Optimization

In a pure LockSet-based race detector [27] or hybrid race detectors [24, 16] which combine
HB and LockSet, the contribution by locks is often ignored in the HB relation. Instead, ACQ
and REL events are tracked separately using LockSet.

LockSet Condition: The set of locks currently held by a given thread is referred to as its
LockSet. The LockSet condition states that two conflicting accesses are in a race if there is
no HB relation between them, and the LockSets of the two threads do not overlap, i.e., Li ∩
Lj = ∅, where Li and Lj refer to the LockSet of Ti and Tj , respectively, at the time of event
generation.

The LockSet condition allows us to optimize ReX by filtering redundant events across
synchronization boundaries incurred by both ACQ and REL events, because events with the
same LockSet may be redundant. For example, the second and the third read events from
location À in Figure 4 can now be filtered because according to the LockSet algorithm, these
two events are redundant to the first read event from À.

This optimization can be implemented by slightly modifying the ReX algorithm (Line
13 in Algorithm 1). Specifically, instead of appending the lock l to the thread concurrency
context Γt for REL, upon an ACQ or REL event, we can perform the following:

ACQ: add the lock address into Γt. If a lock previously acquired is acquired again, we
ignore the event.
REL: remove the lock address from Γt. In a well-formed trace, the corresponding lock
acquire event of this address must have already been observed before this event is seen.

To support reentrant locks, we can further add a local counter to each lock address in the
concurrency context Γt. The counter is zero initially, and is incremented (or decremented)
by one upon each ACQ (or REL) of the corresponding lock address. The lock address is
removed from Γt when the counter becomes zero upon a REL.

Figure 6 illustrates how ReX with this optimization works for the same example in
Figure 4b. The main difference is Location À: the three read events e4,8,12 now have the
same concurrent context g1− g2− g3 with an empty lockset. Therefore, e8 and e12 can be
filtered out.

ECOOP 2017



15:14 What’s the Optimal Performance of Precise Dynamic Race Detection?

T1 T2
for(i=0;i<2;i++){ 
   lock A 
   x++ 
   y++ 
   unlock A 
}

  lock A 
  y = b 
  unlock A 
  if(b>=1) 
    z = x

   x=y=0 

3
4

2
1

7

8

6
5

Figure 7 An example illustrating the unsoundness of the LockSet optimization.

We next use an example in Figure 7 to illustrate why this optimization is sound for the
hybrid (or LockSet-based) algorithm only, but unsound for the HB-based algorithm such
as FastTrack. For HB-based race detectors, the location Á and Ç are in a race when the
schedule is À-Á-Â-Ã-Ä-Å-Æ-Ç-À-Á-Â-Ã. However, the LockSet optimization will determine
that the second event from Á is redundant to the first event from Á and hence filter it out
from the trace. Because the first event from Á happens before the event from Ç (introduced
by the lock and unlock events from Ã-Ä), the race will be missed.

5 Evaluation

Our evaluation focuses on answering the following four sets of research questions:
1. Redundancy: How much event redundancy is there in real-world execution traces?
2. Optimal Performance: Hypothetically, what is the optimal runtime performance of a

precise HB-based dynamic race detector if all concurrentially-redundant events were
removed with no cost?

3. ReX Effectiveness and Efficiency: How effective is ReX in removing redundant events?
Can ReX improve runtime performance of dynamic race detectors? How much speedup
or slowdown can ReX bring?

4. ReX Precision and Soundness: Does ReX affect the precision or soundness (i.e., detection
ability) of race detection in practice?

Evaluation Methodology. We use ReX as a preprocessing step in the RoadRunner tool
chain [13], and compare the runtime performance and race detection results between FastTrack
with and without ReX. FastTrack implements the fastest precise dynamic race detection
algorithm, so we focus on integrating FastTrack with ReX. ReX intercepts the full event steam
generated by RoadRunner (without any optimization), and passes an event to FastTrack
when it determines that the specific event is not redundant.

We have evaluated ReX as well as the LockSet optimization on a collection of 13 commonly
studied multithreaded benchmarks including all the eight benchmarks from the Java Grande
suite, four from the DaCapo suite1 [5] (which are all real-world applications), as well as the
popular Tsp (traveling salesman problem) benchmark. Table 1 summarizes the benchmarks
and their trace characteristics. The first eight benchmarks are from Java Grande and all
of them were tested running on 20 threads. The next four benchmarks are from DaCapo

1 DaCapo contains several other multithreaded applications, but we do not include them because the
RoadRunner tool failed to instrument them.



J. Huang and A.K. Rajagopalan 15:15

Table 1 Benchmarks and the trace characteristics. For all benchmarks, 99+% of the events are
memory reads or writes.

#EventsBenchmark #Threads MEM Volatile ACQ/REL SND/RCV
LUFact 20 7.6G 23 12 38
Series 20 6M 0 12 38
Sor 20 2.65G 77.7M 12 38
Sparse 20 7.7G 0 12 38
Crypt 20 2.1G 0 12 76
MonteCarlo 20 492M 0 22 38
Moldyn 20 2.02G 23 22 38
RayTracer 20 3.55G 23 148 38
Avrora 7 1.4G 0 2.9M 580K
Xalan 9 1.1G 0 8.9M 1.7K
Sunflow 17 9.7G 0 1.8K 32
Lusearch 10 1.4G 1.2M 2.7M 136
Tsp 9 1.5G 0 62K 16

and were tested under the default configuration. Columns 3-6 report the number of different
types of events in the execution, For all the benchmarks, the MEM events are the majority
accounting for more than 99% of all the events. Note that volatile memory accesses are
reported separately because they introduce happens-before according to the standard HB
semantics [19], and they are not checked for redundancy since concurrent volatile accesses
are not data races.

To evaluate the trace redundancy, we run ReX without optimization to obtain the number
and the percentage of redundant events. To assess the optimal performance of dynamic race
detection, we assume that all concurrentially-redundant events could be eliminated with no
cost. The optimal overhead can hence be approximated by subtracting the running time of
ReX+FastTrack with that of running ReX alone. An additional performance factor is the
runtime cost of instrumentation, which is used to generate the event stream. In practice,
because the instrumentation in RoadRunner is based on code rewriting, the cost can be high.
Therefore, we also include the instrumentation cost and calculate the optimal performance as
X −Y +Z ∗ (1− redun%), where X is the cost of ReX+FastTrack, Y the cost of ReX alone,
Z the instrumentation cost of all events and redun% the percentage of redundant events. To
measure Z, we run standalone RoadRunner on each benchmark with no race detection.

Hardware Configuration. The hardware used to run these experiments was an eight-core
iMac machine with 4.0GHz Intel Core i7 processor, 32 GB DDR3 memory with Java JDK
1.8 installed.

Summary. The results are reported in Tables 2-5. All experimental data were averaged
over three runs. Overall, ReX and its LockSet optimization identify 97% and 98.2% of the
total events as redundant, respectively, improving the runtime performance of FastTrack by
more than 30% while incurring 1.3X and 1.2X memory overhead, and producing the same
unique data races as reported by FastTrack. If all redundant events were removed with no
runtime cost, the optimal performance of FastTrack can be improved by 90% on average.

We next discuss the results with respect to these research questions.

ECOOP 2017



15:16 What’s the Optimal Performance of Precise Dynamic Race Detection?

Table 2 Results of event redundancy and race detection performance.

Native Instrument FastTrack ReX ReX+FTBenchmark time only time(o.h.) only time(o.h.) #redun(%)

LUFact 1.94s 36.2s(18X) 108s(55X) 51.9s(26X) 55.6s(33X) 7.59G(99%)
Series 78.9s 90.1s(14%) 86.6s(10%) 89s(13%) 86.1s(9%) 5.99M(99%)
Sor 2.82s 15s(4X) 35.3s(12X) 17.7s(5X) 18.5s(6X) 2.53G(95%)
Sparse 0.6s 39.8s(65X) 124s(206X) 60.7s(100X) 61.2s(101X) 7.69G(99%)
Crypt 0.35s 17s(47X) 55.8s(158X) 31.7s(90X) 50.4s(143X) 2.09G(99%)
MonteCarlo 0.59s 2.75s(4X) 9.9s(16X) 5.1s(8X) 7.4s(11X) 488M(99%)
Moldyn 0.42s 10.7s(24X) 30.1s(71X) 19.1s(44X) 18.8s(44X) 2.01G(99%)
RayTracer 0.36s 12.7s(34X) 43.1s(119X) 22.9s(63X) 24s(66X) 3.54G(99%)
Avrora 2.4s 19.4s(7X) 36s(14X) 32.1s(12X) 35s(13X) 1.21G(87%)
Xalan 1.7s 14.2s(7X) 26s(14X) 22.7s(12X) 26s(14X) 1G(93%)
Sunflow 1.8s 47.1s(25X) 157s(86X) 122.7s(67X) 132s(72X) 9.69G(99%)
Lusearch 1.2s 57.5s(47X) 68s(56X) 42.6s(35X) 58s(47X) 1.37G(97%)
Tsp 0.9s 31.9s(34X) 67s(73X) 55.2s(60X) 58s(63X) 1.49G(99%)
Average - 24X 68X 40X 47X (↓31%) 97%

5.1 Redundancy and Optimal Performance
Table 2 Column 2 reports the native execution time of each benchmark, ranging from 0.35s
for Crypt to 78.9s for Series. Column 3 reports the running time of the instrumented
version and the instrumentation slowdown. The instrumentation incurs 24X slowdown on
average, ranging between 14%-65X. Column 4-6 respectively report the time and overhead of
FastTrack, ReX alone and ReX+FastTrack. Column 7 reports the number of the redundant
events identified by ReX and their percentage over the total events.

Overall, redundant events are pervasive in these benchmarks. This is expected because
repeated memory accesses from the same lexical locations via loops are typical in real-world
programs. For most benchmarks (10 out of the 13 benchmarks), more than 99% of the
events are redundant. On average, ReX identifies 97% of the total events as redundant. For
the other three (Sor, Avrora, Xalan), ReX identifies 95%, 87%, and 93% redundant events,
respectively.

Our result indicates that the performance of dynamic race detection has a large improve-
ment space by removing the concurrentially-redundant events. If all concurrentially-redundant
events were removed from the trace (e.g., by compiler analysis or a zero overhead runtime
analysis to identify redundancy), the performance of FastTrack could be improved by 90%
(following the formula X − Y + Z ∗ (1− redun%) described earlier), reducing the runtime
overhead of FastTrack from 68X to 7X for all these benchmarks on average. For most of the
Java Grande benchmarks, the FastTrack runtime overhead could be reduced by 95%, from
80X to 3X only. The only exception is Crypt, for which the overhead of FastTrack can be
reduced by 66%, from 158X to 53X.

5.2 ReX Performance, Precision & Soundness
The number and percentage of redundant events identified by ReX without and with the
LockSet optimization are reported in the last columns in Table 2 and Table 3, respectively.

Overall, ReX improves the runtime overhead of FastTrack by 31% (from 68X to 47X)
on average. The LockSet optimization further improves the performance by 1% (to 46X).
ReX identifies that on average 97% of the events in the trace are redundant. ReX with the
LockSet optimization identifies 98.2% of the total events as redundant. For instance, for
Avrora, while ReX only detects 87% redundant events, the LockSet optimization detects 95%.



J. Huang and A.K. Rajagopalan 15:17

Table 3 Runtime performance of ReX with the LockSet optimization.

ReX-LockSet+FTBenchmark #redun(%) time(o.h.)
LUFact 52.1s(26X) 7.59G(99%)
Series 85s(8%) 5.99M(99%)
Sor 18s(5X) 2.6G(98%)
Sparse 59.7s(99X) 7.69G(99%)
Crypt 50.2s(142X) 2.09G(99%)
MonteCarlo 7s(56X) 488M(99%)
Moldyn 19.1s(44X) 2.01G(99%)
RayTracer 23.1s(63X) 3.54G(99%)
Avrora 26s(10X) 1.33G(95%)
Xalan 25s(14X) 1.08G(98%)
Sunflow 80s(43X) 9.69G(99%)
Lusearch 52s(42X) 1.39G(99%)
Tsp 54s(59X) 1.49G(99%)
Average 46X(↓32%) 98.2%

The reason is that the LockSet optimization can detect redundant events across the lock
ACQ boundaries.

Table 4 reports the memory overhead of ReX. ReX incurs 1.3X memory overhead
compared to FastTrack. The LockSet optimization further reduces the memory overhead to
1.2X, because more redundant events are filtered out.

Table 5 reports the total number of data races and the number of unique races among
them detected by FastTrack, FastTrack with ReX, and FastTrack with ReX and the LockSet
optimization. For all the benchmarks, ReX and the LockSet optimization both result in
the same number of unique data races detected by FastTrack. Even though the LockSet
optimization is unsound in theory for HB-based race detectors, it does not affect the race
detection results in these benchmarks. We also empirically validated that the unique races
detected by FastTrack match with the unique races detected upon using ReX and the
optimization. This confirms that ReX is both theoretically sound and practically useful.

One additional benefit we observed, that was not originally planned, was that error output
verbosity tended to be greatly reduced. Sometimes, we observed that FastTrack reports
races on a particular race pair several hundreds of times, even though a single instance is
sufficient to alert the programmer to the concurrency bug. ReX filters most of the redundant
events before sending them to FastTrack, reducing the total number of the reported races
and saving the user valuable time in parsing the tool output. For instance, FastTrack reports
644 total races in Sor, but only 10 of them are unique. With ReX-LockSet, this number is
reduced to 38, containing the same number of unique races. This also proved very useful in
our evaluation stage when we compared the race output with and without ReX. Of course,
this benefit can also be achieved via an automatic offline analysis that filters out superfluous
race reports.

6 Related Work

Data race detection has attracted a significant research attention in the past few years
motivated by the multicore and manycore hardware architectures. Researchers have proposed

ECOOP 2017



15:18 What’s the Optimal Performance of Precise Dynamic Race Detection?

Table 4 Memory overhead (MB) of ReX.

Benchmark FastTrack ReX+FT ReX-LockSet+FT
LUFact 2194 3137(43%) 3137(43%)
Series 339 290(-14%) 301(-11%)
Sor 1705 5326(2.1X) 2277(34%)
Sparse 902 885(-2%) 1984(1.2X)
Crypt 5905 11896(1X) 9994(68%)
MonteCarlo 1637 4494(1.75X) 4456(1.72X)
Moldyn 233 1267(4.4X) 1267(4.4X)
RayTracer 68 331(3.9X) 411(5X)
Avrora 347 1501(3.3X) 636(83%)
Xalan 3183 3212(1%) 2885(-9%)
Sunflow 1974 3254(65%) 2665(35%)
Lusearch 24985 22837(-9%) 26570(6%)
Tsp 848 879(4%) 2727(2.2X)
Average - 1.3X 1.2X

a wide spectrum of race detection techniques, both static [23, 31] and dynamic [4, 10, 12].
targeting different application domains [3, 22] and different types of software [9, 11, 25].

To improve runtime performance, there are two areas where recent research has focused
on: 1) improved underlying race-detection algorithms such as FastTrack [12], and 2) reduced
static instrumentation or runtime checking of races. Reducing the number of instrumented
or checked events by finding redundancies is orthogonal to the race-detection algorithm and
works across different algorithms. There are three families of techniques that help in finding
these redundancies, discussed below.

Static analysis based tools: Tools such as [8, 14, 34, 10, 30] target statically identifying
redundant events that will never or less likely lead to races. They eliminate those accesses that
are guaranteed to be race-free or would not result in generation of any new races. For example,
IFRit [10] identifies interference free regions of the program and reduces instrumentation in
them. RaceTrack [34] adds more instrumentation to those regions that are more susceptible
of races and lesser instrumentation to regions that are not. However, precisely analyzing the
source code and determining such regions is hard. These tools struggle to properly analyze
external library features and program constructs such as reflections, which may result in loss
of precision or soundness.

The static analysis closest to our work is RedCard [14], which proposes Span redundancy,
a static release-free region from the same thread bounded by two outgoing HB edges. Span
redundancy captures a subset of redundant events characterized by concurrential-subsume
redundancy. For example, it does not capture redundant events across different threads.
In addition, detecting redundant events at runtime has a number of benefits: 1) it greatly
simplifies the algorithm design because the address and thread of memory accesses is available
at runtime; 2) it handles dynamic program features automatically without expensive or
undecidable static analysis; 3) it may detect more redundant events (those are input-specific).

BigFoot [26] is a recent technique that combines sophisticated static analysis with dynamic
analysis to coalesce checks and compress metadata for checks. It significantly improves the
performance of FastTrack by 60% because multiple accesses to an object or array may be
converted to a single check that manipulates a single piece of compressed metadata, e.g., it
may move a check out of a loop. Compared to BigFoot, ReX does not require static analysis.



J. Huang and A.K. Rajagopalan 15:19

Table 5 Number of detected total and unique races by different approaches.

Benchmark FastTrack ReX+FT ReX-LockSet+FT
LUFact 0(0) 0(0) 0(0)
Series 0(0) 0(0) 0(0)
Sor 644(10) 44(10) 38(10)
Sparse 0(0) 0(0) 0(0)
Crypt 0(0) 0(0) 0(0)
MonteCarlo 100(1) 8(1) 38(1)
Moldyn 0(0) 0(0) 0(0)
RayTracer 100(1) 100(1) 100(1)
Avrora 200(2) 200(2) 200(2)
Xalan 168(8) 16(8) 16(8)
Sunflow 63(8) 13(8) 12(8)
Lusearch 205(11) 30(11) 28(11)
Tsp 100(1) 81(1) 63(1)

Online tools: To improve runtime performance, several online sampling techniques [6,
20, 34] have been proposed to scale dynamic race detection to long running programs.
LiteRace [20], Pacer [6], and RaceTrack [34] all use sampling to reduce the tracing overhead
and may achieve negligible runtime slowdown, at the cost of reduced race detection ratio.
SlimState [33] introduces an online algorithm to optimize array shadow state representations.
RoadRunner [13] has an inbuilt thread-local pass that is supposed to speed up dynamic
analysis tools by filtering memory addresses that are solely accessed by a single thread.
However, we found that the design of this filter is unsound and can result in missing races.

Post-processing on trace: Huang et al. [17] propose an offline trace analysis, TraceFilter,
to remove redundant events in the context of predictive concurrency analysis for detecting
concurrency analysis anomalies such as data races and atomicity violations. Our work is
inspired by this analysis. However, TraceFilter only captures a subset of redundant events
characterized by our concurrential redundancy criterion. Specifically, TraceFilter captures
intra-thread redundant events with respect to the hybrid HB and LockSet algorithm, as
well as entirely redundant threads. It does not capture inter-thread redundant events, and
because of LockSet it is unsound for the precise HB algorithm.

Improved detection. Another area of much development is the design of tools that try
to improve the race detection ability. Predictive trace analysis [15, 16, 7, 29, 32] records a
single execution of the program and then generates other permutation of the trace events
under different scheduling constraints allowing it to detect concurrency bugs not exposed in
the original trace. We plan to investigate the applicability of ReX for this type of analyses
dynamically in future work.

7 Conclusion

We have shown that for dynamic race detection there exists a significant percentage of
redundant events that do not reveal any new races and we propose a criterion, concurrential
redundancy, that precisely and optimally characterizes them. We have also shown that if such
redundant events were all removed, the performance of the state-of-the-art precise dynamic

ECOOP 2017



15:20 What’s the Optimal Performance of Precise Dynamic Race Detection?

race detector FastTrack could be significantly improved by 90% on popular benchmarks and
real-world programs. We have also presented a technique, ReX, that efficiently identifies
redundant events and filters them out from the trace. The key enhancement over previous
techniques is that ReX is sound, optimal, and purely dynamic. This gives us the ability to
be completely unaware of complicated program semantics and perform filtering at runtime
without changing the race detection algorithm, and without affecting the soundness and
precision of the race detection result. Our evaluation results show that ReX improves the
runtime performance of FastTrack by 31% on average.

Acknowledgements. We thank our shepherd, Sebastian Burckhardt, and the anonymous
reviewers for their valuable feedback.

References
1 Java Grande benchmark suite. https://www2.epcc.ed.ac.uk/computing/research_

activities/jomp/grande.html.
2 ThreadSanitizer. http://clang.llvm.org/docs/ThreadSanitizer.html.
3 Pavol Bielik, Veselin Raychev, and Martin Vechev. Scalable race detection for android ap-

plications. In ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications, 2015.

4 Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Brandon Lucia. Valor: Efficient,
software-only region conflict exceptions. In ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applications, 2015.

5 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. The DaCapo benchmarks: Java benchmarking development and analysis. In
ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and
Applications, 2006.

6 Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. Pacer: proportional
detection of data races. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 255–268, 2010.

7 Feng Chen, Traian Florin Serbanuta, and Grigore Rosu. jPredictor: a predictive runtime
analysis tool for Java. In International Conference on Software Engineering, pages 211–230,
2008.

8 Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar, and
Manu Sridharan. Efficient and precise datarace detection for multithreaded object-oriented
programs. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2002.

9 Dimitar Dimitrov, Veselin Raychev, Martin Vechev, and Eric Koskinen. Commutativity
race detection. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 305–315, 2014.

10 Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and Hans-J. Boehm. IFRit:
Interference-free regions for dynamic data-race detection. In ACM SIGPLAN Conference
on Object Oriented Programming, Systems, Languages, and Applications, pages 467–484,
2012.

11 Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and transaction-
aware Java runtime. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2007.

https://www2.epcc.ed.ac.uk/computing/research_activities/jomp/grande.html
https://www2.epcc.ed.ac.uk/computing/research_activities/jomp/grande.html
http://clang.llvm.org/docs/ThreadSanitizer.html


J. Huang and A.K. Rajagopalan 15:21

12 Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise dynamic race
detection. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 121–133, 2009.

13 Cormac Flanagan and Stephen N Freund. The roadrunner dynamic analysis framework for
concurrent programs. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, pages 1–8, 2010.

14 Cormac Flanagan and Stephen N. Freund. Redcard: Redundant check elimination for
dynamic race detectors. In European Conference on Object-Oriented Programming, 2013.

15 Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. Maximal sound predictive race
detection with control flow abstraction. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 337–348, 2014.

16 Jeff Huang and Charles Zhang. PECAN: Persuasive Prediction of Concurrency Access
Anomalies. In ACM International Symposium on Software Testing and Analysis, pages
144–154, 2011.

17 Jeff Huang, Jinguo Zhou, and Charles Zhang. Scaling predictive analysis of concurrent
programs by removing trace redundancy. ACM Transactions on Software Engineering and
Methodology, 22(1):8:1–8:21, 2013.

18 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, 1978.

19 Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2005.

20 Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. LiteRace: effective
sampling for lightweight data-race detection. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 134–143, 2009.

21 Friedemann Mattern. Virtual time and global states of distributed systems. In PARALLEL
AND DISTRIBUTED ALGORITHMS, pages 215–226. North-Holland, 1988.

22 Jeremie Miserez, Pavol Bielik, Ahmed El-Hassany, Laurent Vanbever, and Martin Vechev.
Sdnracer: Detecting concurrency violations in software-defined networks. In Proceedings
of the 1st ACM SIGCOMM Symposium on Software Defined Networking Research, pages
22:1–22:7, 2015.

23 Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java. In
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
308–319, 2006.

24 Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2003.

25 Veselin Raychev, Martin Vechev, and Manu Sridharan. Effective race detection for event-
driven programs. In ACM SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, pages 151–166, 2013.

26 Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund. BigFoot: Static check placement
for dynamic race detection. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2017.

27 Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.
Eraser: A dynamic data race detector for multi-threaded programs. In ACM Symposium
on Operating Systems Principles, pages 27–37, 1997.

28 Koushik Sen. Race directed random testing of concurrent programs. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 11–21, 2008.

29 Ohad Shacham, Mooly Sagiv, and Assaf Schuster. Scaling model checking of dataraces
using dynamic information. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2005.

ECOOP 2017



15:22 What’s the Optimal Performance of Precise Dynamic Race Detection?

30 Christoph von Praun and Thomas R. Gross. Object race detection. In ACM SIGPLAN
Conference on Object Oriented Programming, Systems, Languages, and Applications, 2001.

31 Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: static race detection on millions of
lines of code. ESEC-Joint European Software Engineering Conference and ACM SIGSOFT
Symposium on Foundations of Software Engineering, 2007.

32 Chao Wang, Sudipta Kundu, Malay K. Ganai, and Aarti Gupta. Symbolic predictive
analysis for concurrent programs. In FM, 2009.

33 James R. Wilcox, Parker Finch, Cormac Flanagan, and Stephen N. Freund. Array shadow
state compression for precise dynamic race detection (t). In Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
155–165, 2015.

34 Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficient detection of data race
conditions via adaptive tracking. In ACM Symposium on Operating Systems Principles,
2005.


	Introduction
	Overview
	Happens-Before Race Detection
	Concurrential Redundancy

	The ReX Algorithm
	Example

	The LockSet Optimization
	Evaluation
	Redundancy and Optimal Performance
	ReX Performance, Precision & Soundness

	Related Work
	Conclusion

