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ABSTRACT
We study fairness of ranking in online job marketplaces. We focus

on group fairness and aim to algorithmically explore how a scor-

ing function, throughwhich individuals are ranked for jobs, treats

different demographic groups. Previous work on group-level fair-

ness has focused on the case where groups are pre-defined or

where they are defined using a single protected attribute (e.g.,

Caucasian vs Asian). In this paper, we argue for the need to exam-

ine fairness for groups of people defined with any combination

of protected attributes. To do this, we formulate an optimization

problem to find a partitioning of individuals on their protected

attributes that exhibits the highest unfairness with respect to the

scoring function. The scoring function yields one histogram of

score distributions per partition andwe rely on EarthMover’s Dis-

tance, a measure that is commonly used to compare histograms,

to quantify unfairness. Since the number of ways to partition in-

dividuals is exponential in the number of their protected attribute

values, we propose two heuristic algorithms to navigate the space

of all possible partitionings to identify the one with the highest

unfairness. We evaluate our algorithms using a simulation of

a crowdsourcing platform and show that they can effectively

quantify unfairness of various scoring functions.

INTRODUCTION AND POSITIONING
Online job marketplaces are gaining popularity as mediums to

hire people to perform certain tasks. Examples include freelanc-

ing platforms such as Qapa and MisterTemp’ in France, and

TaskRabbit and Fiverr in the USA. On those platforms, work-

ers can find temporary jobs in the physical world (e.g., looking

for a plumber), or in the form of virtual “micro-gigs” such as “help

with HTML, JavaScript, CSS, and JQuery”. A person who needs

to hire someone for a job can formulate a query and is shown a

ranked list of people. The resulting ranking naturally poses the

question of fairness. Algorithmic fairness has recently received

great attention from the data mining, information retrieval and

machine learning communities (See for instance [3, 5, 8, 10]). The

most common definition of fairness was introduced in [1, 11]

as demographic parity, that is the unfair treatment of a person

based on belonging to a certain group of people. Groups are de-
fined using protected attributes such as gender, age, ethnicity

or location. We carry these definitions in our work and define

unfairness in online marketplaces as the unequal treatment of

people by a scoring function based on their protected attributes.

This definition is inline with what is also commonly referred to

as group unfairness [2].
Most previous work on group-level fairness have either as-

sumed that groups are pre-defined [8] or that they are defined

using a single protected attribute (e.g., Caucasian vs Asian) [4].
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In this work, we consider groups of people defined with any

combination of protected attributes (the so-called subgroup fair-
ness [5]). The scoring function yields one histogram per demo-

graphic group as score distributions. We use the Earth Mover’s

Distance (EMD) [7], a measure that is commonly used to compare

histograms, to quantify distances between groups. Our intuition

is that if score distributions between groups are significantly

different, the scoring function does not treat the individuals in

these groups equally. For instance, consider two groups only,

namely young males and females living in France. Unfairness

can be computed as the distance between the score distributions

of those two groups.

Since we do not want to focus only on pre-defined groups,

we must exhaust all possible ways of partitioning individuals on

their protected attributes to quantify unfairness. For example, a

scoring function might treat both men and women equally but

might be unfair towards older Asian Americans compared to

younger White Americans. We define an optimization problem

as finding a partitioning of the ranking space, i.e., individuals and

their scores, that exhibits the highest average EMD between its

partitions. Exhaustively enumerating all possible partitionings

is exponential in the number of values of protected attributes.

Therefore, we propose two heuristic algorithms, balanced that

generates a balanced tree of partitions, and unbalanced that

generates an unbalanced tree of partitions. At each step, our

algorithms greedily split individuals on the worst attribute, i.e.,

the one that results in the partitioning with the highest EMD

between score distributions. This local decision is akin to the one

made in decision trees using gain functions [6]. The algorithms

stop when there are no further attributes left to split on or when

the current partitioning of individuals exhibits more unfairness

than it would if its partitions were split further.

PROBLEM DEFINITION
To quantify unfairness in online job marketplaces, we model the

problem as computing the highest average distance between the

score distributions of all possible partitions of individuals. Unlike

previous work where partitions were defined or known a priori

(e.g., [4]), we explore the space of all possible groups defined by

a combination of values of the individuals’ protected attributes.

The goal becomes finding an unfair partitioning of individuals

under the scoring function. We cast this goal as an optimization

problem as follows.

Definition 1 (Most Unfair Partitioning Problem). We
are given a set of individualsW , where each individual is asso-
ciated with a set of protected attributes A = {a1,a2, ...,an } and
observed attributes B = {b1,b2, . . . ,bm }. The protected attributes
are inherent properties of the individuals such as gender, age, eth-
nicity, origin, etc. The observed attributes represent the skills of
individuals for jobs and could include, for instance, the reputation
and writing skills of an individual. We are also given a scoring
function f :W → [0, 1], which is defined using observed attributes
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Figure 1: Optimum Partitioning of the Toy Example Data

as follows: f (w) =
m∑
i=1

αibi , where αi is a user-defined weight for

observed attributebi . A weight of zero indicates that the correspond-
ing attribute is not relevant for the user in ranking the individuals.
Our goal is to fully partition the individuals inW into k disjoint

partitions P = {p1,p2, . . . ,pk } based on their protected attributes
in A using the following optimization objective:

argmax

P
unfairness(P , f )

subject to ∀i, j pi
⋂

pj = ϕ

k⋃
i=1

pi =W

We now define how to compute the amount of unfairness of a

function f for a partitioning P , or unfairness(P , f ) in the above

optimization problem.

Definition 2 (Average Pairwise Unfairness). For a set of
individualsW , a full-disjoint partitioning of the individuals P =
{p1,p2, . . . ,pk } and a scoring function f , unfairness of f for the
partitioning P is quantified as the average pairwise Earth Mover’s
Distance (EMD) between the distribution of scores in the different
partitions of P , which is computed as follows:

unfairness(P , f ) = avg

i, j
EMD(h(pi , f ),h(pj , f ))

where h(pi , f ) is a histogram of the scores of individuals in pi using
f .

Figure 1 shows a toy example of the optimum partitioning of

10 workers in a freelancing platform, which are ranked based

on their qualification for some task using a scoring function f .
The optimum partitioning is the one resulting from splitting the

workers based on Gender first, and then splitting only the Male

partition based on Language to get the following partitioning of

workers: Male - English, Male - Indian, Male - Other, and Female.
To arrive to this partitioning, one must exhaust all possible full
disjoint partitionings of workers based on the protected attributes
A and for each possible partitioning compute the average EMD

between any two partitions. To do that, we generate a histogram

for each partition as indicated in Figure 1 based on the function

scores by creating equal bins over the range of f and counting the
number of workers whose function values f (w) fall in each bin.

Algorithm 1 balanced (W : a set of individuals, f : a scoring

function, A: a set of attributes)

1: a = worstAttribute(W , f ,A)
2: A = A − a
3: current = split(W ,a)
4: currentAvд = averaдeEMD(current , f )
5: while A , ∅ do
6: a = worstAttribute(current , f ,A)
7: A = A − a
8: children = split(current ,a)
9: childrenAvд = averaдeEMD(children, f )
10: if currentAvд ≥ childrenAvд then
11: break

12: else
13: current = children
14: currentAvд = childrenAvд
15: end if
16: end while
17: Add current to output

Once the partitioning with highest average pairwise unfairness

has been identified, it is up to the user, requester or platform

developer, to decide on the right subsequent action.

ALGORITHMS
Our optimization problem for finding themost unfair partitioning

is hard since there are is an exponential number of possible

partitionings P . For this reason, we propose heuristics-based

algorithms to identify a partitioning of individuals with respect

to our optimization objective within reasonable time.

We first propose balanced (Algorithm 1), an algorithm that

generates a partitioning of the individuals in a greedy manner

using the EMD of the partitions. balanced is based on decision

trees with EMD as utility [6]. It starts by splitting the individuals

on theworst attribute with respect to EMD. This is done by trying

out all possible attributes one at a time, and associating to each

attribute-value partition, one histogram of the scores of all the

individuals it contains. For each candidate attribute, balanced

computes the average pairwise EMD over histograms associated

to the partitions obtained with the values of that attribute. It then

returns the attribute with the highest average pairwise EMD

and splits on that attribute. In the subsequent splitting steps,

balanced iteratively partitions the individuals using the other

attributes in the same manner and only stops when the average

pairwise EMD of the current partitioning is greater than that of

the next candidate partitioning.

balanced results in a partitioning of all the individuals using

the same set of attributes (i.e., a balanced partitioning tree) since

each splitting uses the same attribute over all current partitions.

We also developed unbalanced (Algorithm 2), another algorithm

that partitions the individuals in a non-homogenous manner by

locally deciding for each partition whether to further split it or

not (i.e., resulting in an unbalanced partitioning tree).

unbalanced is a recursive algorithm that decides to split a

given partition by comparing the average EMD of that parti-

tion with its siblings to that of its children with its siblings. The

intuition behind this is that it assesses what would happen to

unfairness as measured by the average EMD if the partition was

replaced by its children. It only splits a partition if its average

pairwise EMD with its siblings is less than the average pairwise
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Algorithm 2 unbalanced (current : a partition, siblinдs: a set
of partitions, f : a scoring function, A: a set of attributes)

1: if A = ∅ then
2: Add current to output
3: else
4: currentAvд = averaдeEMD(current , siblinдs, f )
5: a = worstAttribute(current , f ,A)
6: A = A − a
7: children = split(current ,a)
8: childrenAvд = averaдeEMD(children, siblinдs, f )
9: if currentAvд ≥ childrenAvд then
10: Add current to output
11: else
12: for each partition p ∈ children do
13: unbalanced ({p}, children − {p}, f ,A)
14: end for
15: end if
16: end if

EMD of its potential children with the partition’s siblings. To

invoke the algorithm, we first split the given set of individuals

using the worst attribute as in the case of balanced and then the

algorithm unbalanced is called once for each resulting partition.

After all recursive calls of the algorithm terminate, the output is

returned as the final partitioning of the individuals.

EVALUATION
To evaluate the effectiveness of our approach in quantifying

unfairness, we run a simulation of a crowdsourcing platform

using two sets of active workers and various scoring functions

that rank those workers based on their qualification for tasks.

Setting. We generate two sets of active workersW of different

sizes: 500 and 7300 (the estimated number of Amazon Mechanical

Turk workers who are active at any time [9]). Each w in W

has 6 protected attributes: Gender = {Male, Female}, Country =

{America, India, Other}, Year of Birth = [1950, 2009], Language =

{English, Indian, Other}, Ethnicity = {White, African-American ,

Indian, Other}, and Years of Experience = [0,30], and two observed

attributes: LanguageTest = [25,100] and ApprovalRate = [25,100].

The values of those attributes are populated randomly so as

to avoid injecting any bias in the data ourselves. Moreover, we

define 5 different task qualification functions of the form f =
αb1 + (1 − α)b2, where b1 = Language Test and b2 = Approval

Rate and α ∈ {0, 0.3, 0.5, 0.7, 1}.

We compare our two proposed algorithms unbalanced and

balanced to a set of baselines. The first two baselines, which

we refer to as r-balanced and r-unbalanced, are copies of our

two algorithms balanced and unbalanced that use a random

attribute instead of the worst attribute to split the workers at each

step. The third baseline, which we refer to as all-attributes,

is an algorithm that splits the workers based on all their pro-
tected attributes resulting in a full partitioning. Note that we also

implemented an exhaustive algorithm that solves our optimiza-

tion problem exactly by generating all possible partitionings in a

brute-force manner and then returning the one with the highest

average EMD. However, this algorithm failed to terminate after

running for two days with only 6 attributes as in our simulation,

even when each attribute had only a maximum of 5 values.

Simulation Results. Our first observation from Tables 1 and 2

is that for both datasets, functions f4 and f5 exhibit the highest
unfairness as measured by the average pairwise EMD for all the

partitionings retrieved by all the algorithms. Recall that these two

functions are the ones that rely on one observed attribute only

(LanguageTest in case of f4 and ApprovalRate in case of f5). This
indicates that if the scoring function uses fewer observed attributes,
the chance of unfairness increases. In our simulation, since the
attribute values were generated at random, there is a higher chance
that the function scores correlate with a single protected attribute.

Second, we observe that our two algorithms unbalanced and

balanced consistently outperform or do as good as all other

baselines for all datasets and functions. For the case of 500 work-

ers, the unbalanced outperforms all other algorithms for the

last three functions f3, f4 and f5. On the contrary, the balanced

returns the partitioning with the highest average EMD in the case

of f1. In the case of f2, both balanced and r-balanced return

the highest average EMD over the partitionings they find. This
allows us to validate the stopping condition used in our algorithms.

Finally, in the case of 7300 workers, all the algorithms behave

similarly, with the balanced and all-attributes returning the

partitionings with slightly higher average EMD compared to all

other algorithms. Upon investigating the returned partitioning

by the different algorithms, we observed that in most cases all

the algorithms returned the full partitioning tree, i.e., using all

protected attributes, which is the same as the partitioning re-

turned by the all-attributes algorithm. We conjecture that it is
due to the random values of all attributes.

In terms of efficiency, the balanced algorithm took the most

time to terminate compared to all other algorithms. In addition,

the larger the dataset, the more time it took for all algorithms to

finish. This is very intuitive given that the larger the dataset, the

larger the individual histograms and the more time it takes to

compute the pairwise EMD between them. Moreover, the deeper

the partitioning tree, the larger the number of histograms that

need to be compared. Finally, our two algorithms, balanced

and unbalanced incur additional time since at each splitting

step, they need to examine all remaining attributes to determine

the worst one (i.e., the one which might result in the highest

average EMD). All these factors contributed to the increased

time to execute the balanced compared to all others. It is worth

noting nonetheless that balanced terminates in less than 1.6

hours in the worst case (for the case of 7300 workers).

Qualitative Results. In addition to our simulation where we

used a set of random task qualification functions, we also ran our

algorithms on the following set of carefully-constructed func-

tions, which are unfair by design:

• f6: this function discriminates against females by setting

the task qualification of workers as follows: f6(w) > 0.8 if

w is male and f6(w) < 0.2 ifw is female.

• f7: this function sets the qualification of workers in a

biased manner based on their gender and nationality as

follows: f7(w) > 0.8 if w is male and American, f7(w) <

0.2 ifw is female and American, 0.5 < f7(w) < 0.7 ifw is

Indian, either male or female, f7(w) > 0.8 if w is female

with any other nationality, and f7(w) < 0.2 if w is male

with any other nationality.

• f8 designed as follows: f8(w) > 0.8 if w is female and

American, 0.5 < f8(w) < 0.8 ifw is female and Indian and

f8(w) < 0.2 ifw is female with another nationality.
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Table 1: Average EMD and runtime for 500 workers and random functions

Algorithm Average EMD time (in secs)

f1 f2 f3 f4 f5 f1 f2 f3 f4 f5
unbalanced 0.195 0.191 0.179 0.247 0.257 20.987 23.715 22.823 29.504 28.845

r-unbalanced 0.193 0.193 0.177 0.243 0.253 28.33 26.871 28.354 27.333 28.372

balanced 0.196 0.194 0.177 0.246 0.253 311.17 323.16 326.68 330.61 327.22
r-balanced 0.195 0.194 0.177 0.246 0.253 131.87 122.49 119.97 127.06 124.46

all-attributes 0.195 0.193 0.177 0.246 0.253 42.708 42.494 42.597 42.235 42.337

Table 2: Average EMD and runtime for 7300 workers and random functions

Algorithm Average EMD time (in secs)

f1 f2 f3 f4 f5 f1 f2 f3 f4 f5
unbalanced 0.161 0.162 0.151 0.208 0.209 1169.224 1246.651 1205.963 1292.506 1245.037

r-unbalanced 0.162 0.163 0.151 0.208 0.209 1401.36 1391.541 1358.795 1290.977 1397.894

balanced 0.163 0.163 0.151 0.210 0.211 5733.528 5745.611 5693.681 5840.131 5808.715
r-balanced 0.163 0.163 0.122 0.210 0.211 3174.327 3240.727 2358.744 3115.123 3120.553

all-attributes 0.163 0.163 0.151 0.210 0.211 1453.626 1449.466 1450.712 469.839 1467.606

Table 3: Average EMD for 7300 workers & biased functions

Algorithm Average EMD

f6 f7 f8 f9
unbalanced 0.040 0.164 0.460 0.317

r-unbalanced 0.399 0.362 0.322 0.350

balanced 0.800 0.427 0.460 0.359
r-balanced 0.496 0.368 0.330 0.301

all-attributes 0.420 0.368 0.337 0.359

• f9 correlates with protected attributes ethnicity, language

and year of birth similarly to previous ones.

As can be seen from Table 3, balanced retrieves the parti-

tionings with the highest possible average EMD compared to all

other algorithms. In addition, the resulting partitionings are the

ones expected, i.e., using the attributes for which the functions

were designed to correlate with. For example, for f6, balanced
partitions the workers on only gender for all datasets. Similarly,

for f7, it partitions the workers on both gender and country. We

show only the results in the case of 7300 workers due to space

limitation. Finally, we observe that overall for all functions and
algorithms, the average EMD is much higher compared to the func-
tions used in our simulation experiment, which indicates that our
optimization problem is indeed effective in capturing unfairness of
the scoring functions as conjectured. The only exception was for

unbalanced in the case of f6 and f7, where the algorithm ended

up splitting the workers further than it should because of the

local nature of its stopping condition. In fact, since the function

scores were generated at random within the specified range, vari-

ous runs of the experiments resulted in different behavior, where

in some cases, unbalanced performed as well as balanced.

SUMMARY AND FUTUREWORK
We set out to examine fairness of ranking in online job market-

places. To do this, we defined an optimization problem to find a

partitioning of the individuals based on their protected attributes

that exhibits the highest unfairness by a given scoring function.

We used Earth Mover’s Distance between score distributions as a

measure of unfairness. Unlike previous work, we did not assume

a pre-defined partitioning of individuals and instead proposed

two heuristic algorithms, balanced and unbalanced, that effi-

ciently partition the individuals without exploring the full space

of partitionings. Our immediate plan is to test our algorithms

on real datasets from Qapa and TaskRabbit. We are also investi-

gating other formulations and metrics for fairness instead of the

Earth Mover’s Distance. We are also studying ways of "repairing”

bias in the context of ranking in online job marketplaces.
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