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Abstract 

iXen's ambition is to overcome the limits of existing IoT platforms in the cloud and deal with challenges of security 

and interoperability.  Therefore, iXen is interoperable and expandable (i.e.  services can be added or removed) while being 

secure by design: access to services is granted only to authorized users (or other services) based on user roles and access 

policies. Leveraging principles of Service Oriented Architectures (SOA) and the most recent EU standards for context 

information management, iXen is implemented as a composition of RESTful micro-services in the cloud.  iXen adopts a 

3-tier architecture design model. The first layer supports connectivity of the vast diversity of IoT devices with the cloud. 

The second (middle) layer implements IoT data functionality including, database, security and context management 

services allowing devices to publish information and, users (or other services) subscribed to devices to get notified about 

the availability of this information.  Flow-based programming services in the middle layer allow fast development of new 

applications by wiring together IoT devices and services. The third layer makes IoT applications available to customers 

based on subscriptions. The experimental analysis shows that iXen is responding in real-time to complex service requests 

under heavy workloads. 
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1. Introduction 

Cloud is the ideal environment for IoT applications 

deployment due to reasons related to its affordability (no up-

front investment, low operation costs), scalability, easy 

maintenance and accessibility. Cloud platforms facilitating IoT 

application development are known to exist and many are 

available as commercial products [1]. These are highly 

configurable solutions and capable of making strong 

commitments (by means of SLAs) for meeting the needs of 

Quality of Service (QoS) critical applications. However, these 

solutions are fully proprietary and vendor specific and as such, 

they do not support interoperability with third party systems 

and services.  Research should go beyond these limits and 

towards more open, secure and re-configurable IoT platforms.  

Securing IoT infrastructures is a challenging task. 

Potential risks and counter-measures for dealing with security 

have been identified by the industry, by regulatory entities and 

the literature [2]. The principles of Security by Design and, 

Security and Privacy by Default [3] must be applied since the 

design phase of a system. The cloud infrastructure is exposed 

to risks due unauthorized attempts to access services. These are 

handled successfully with the aid of traditional security 

methods (e.g. encryption, authorization, auditing). However, 

 
1 https://eugdpr.org  

an IoT system   is also vulnerable due to malicious devices 

operating at the edge of the network.  

The security mechanisms for the cloud must be 

complemented with trust evaluation methods for dealing with 

these risks [4]. This creates new challenges for dealing with the 

cause and point of system failure if security fails [5]. The 

Industrial Internet Consortium (IIC) [6] emphasizes the need 

for monitoring devices, networks, applications and the cloud. 

Solutions to malicious behavior or malfunction detection, 

suggest continuous monitoring of, the state of IoT nodes, of the 

cloud components or, periodically monitoring system logs or, 

all of the above. The General Data Protection Regulation 

(GDPR)1 of the EU has a significant impact on IoT systems 

design. Data protection is also crucial, as potential intrusion 

may not only lead to vulnerable personal data theft but may 

risk system operation overall. 

iXen focuses on securing the cloud infrastructure from 

unauthorized access to services and data. Securing the IoT 

network is outside the scope of this paper. Building upon our 

previous work on IoT architecture design and implementation 

[2][7] based on Service Oriented Architectures (SOA) [12] and 

cloud micro-services 2 , iXen's ambition is to overcome the 

limits of existing IoT architectures in the cloud and deal with 

challenges of security, openness and interoperability. iXen 

architecture is highly configurable and modular and supports 

generation of fully customizable applications by re-using 

2 https://aws.amazon.com/microservices/  

mailto:petrakis@intelligence.tuc.gr
https://eugdpr.org/
https://aws.amazon.com/microservices/
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services and devices. Leveraging flow-based programming [8], 

new applications can be generated with the aid of user-friendly 

interfaces. The interest of a developer in sensors and services 

for composing a new application is expressed by means of 

queries specifying the desired device and service properties. 

iXen services are re-usable, implement fundamental 

functionality and offer a public interface allowing secure 

connections with other services (even third-party ones). 

Therefore, iXen is interoperable and expandable (i.e.  services 

can be added or removed) while being secure by design: all 

services are protected by an OAuth2.03 mechanism. Access to 

services is granted only to authorized users (or authorized 

services) based on user roles and access policies. This 

mechanism is realized as a synthesis of security micro-services 

which are both, generic and re-usable (i.e. the same mechanism 

is applied for securing all services offered by the platform).   

iXen features an elaborate 3-tier architecture design 

model.  Each layer implements functionality addressing the 

needs of different users’ type, namely infrastructure owners 

(i.e. device owners), application owners (i.e. applications 

developers) and customers (who subscribe to applications).  

The same user may have more than one role in iXen. 

Infrastructure owners are entitled to install and make devices 

available to application owners which, in turn, subscribe to 

devices in order to create applications; finally, customers (i.e. 

end-users) subscribe to applications. 

The first level of the architecture allows devices to 

connect to iXen in the cloud. Captured data from devices are 

encrypted and streamed to the cloud. iXen is capable of 

handling large collections of devices of any type.  This is the 

only part of the system which is affected by the property of a 

device (e.g. a sensor) to use a specific IoT protocol (e.g. 

Bluetooth, Zigbee). The rest of the system is sensor agnostic 

(i.e.  data are processed in JSON which is a sensor agnostic 

format). The second (middle) layer implements advanced data 

processing functionality including, database, security, flow-

based programming for creating applications and, event-driven 

publish-subscribe (i.e. context) services allowing devices to 

publish information and users (or other services) to be notified 

when this information becomes available (i.e. only subscribed 

users or services get notified). The third layer makes 

applications available to customers based on subscriptions.  

Devices and applications are easily discoverable by means of 

user-friendly query mechanisms (a feature which is of 

particular interest for large scale IoT systems).  

Fig. 1 illustrates an example 3-tier system structure, the 

physical entities and their interaction: (a) four devices in layer 

1 connect to gateways and from there to the cloud. The 

application owner in layer 2 makes three applications available 

to customers in layer 3. The customer in layer 3 subscribes to 

one application. Leveraging this 3-layer design, iXen is ready 

to incorporate a business logic (e.g. billing policies) for 

different types of users and become self-sustainable. All users 

may benefit from their participation in iXen based on their 

offerings or be charged based on a pay-per-use cost model or, 

based on their subscriptions to cloud services (left as future 

work). 

iXen is a research prototype and as such, it is not intended 

to compete with existing commercial platforms in terms of 

services offering or performance, but rather, to show how a 

cost effective and self-sustainable IoT eco-system can be 

designed based on principles of SOA design and cloud micro-

 
3 https://oauth.net/2/   
4 https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EU+Stan

dards  

services, using well established, open-source technologies.  

iXen design relies on the most recent EU standards4 for context 

information management and IoT systems design. iXen 

prototype is implemented in OpenStack and Fiware5, the open-

source distributed cloud infrastructure of the EU.  

 

 
Fig. 1. iXen 3-tier design. 

 

iXen is application agnostic allowing a wide range of IoT 

devices (e.g. sensors and gateways) to connect to the cloud. 

iXen is implemented as a composition of modular cloud micro-

services implementing fundamental functionalities and 

communicating with each other using REST [11]. More 

services can be added on demand or, any service can be 

replaced or moved to a different Virtual Machine (VM) (on the 

same or on a different cloud) with minimum overhead (i.e. only 

the IP of the service will change). 

In regards to similar work, iXen concept resembles DIAT 

model [10], an IoT architecture for addressing the challenges 

of device and service interoperability, extendibility and 

security. DIAT layered architecture comprises of three layers 

(referred to as Virtual Object, Composite Virtual Object and 

Service layer).  Similar to iXen and SOA, DIAT decouples 

services into independent modules and binds similar 

functionalities together in different layers. DIAT applies a 

powerful yet very expensive (in terms of complexity and 

speed) security policy and defines a new model for expressing 

users privacy and authorization using ontologies. In contrast, 

iXen is opted for the state-of-art-approach for expressing role-

based user authorization based on XAMC6.  DIAT is positively 

evaluated as a model but it is neither a cloud nor a Service-

Oriented Architecture. It is not accompanied by 

implementation and its   performance has not been assessed in 

a real setting. In contrast, iXen, relies on a Service Oriented 

Architecture in order to handle the issues of modularity, 

extendibility, re-usability and security. 

We run an exhaustive set of experiments using real and 

simulated (but realistic) data aiming to evaluate both, iXen 

response time and scalability. We stressed iXen with high data 

streams and many simultaneous requests. The experimental 

analysis shows that iXen is capable of responding in real-time 

under heavy workloads (i.e. many users applying several 

requests per second). 

The rest of this paper is structured as follows: issues 

related to iXen design and implementation are discussed in 

Sec. 2 followed by an analysis of performance in Sec. 3. 

Conclusions and issues for future work are discussed in Sec. 4. 

5 https://www.fiware.org  
6 https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml 

https://oauth.net/2/
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EU+Standards
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EU+Standards
https://www.fiware.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
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2. Design and Architecture 

iXen is a novel Future Internet (FI) cloud service for data 

collection from IoT devices in an automatic, generalized and 

modular way. Building upon principles of Service Oriented 

Architectures (SOA) design [12] and driven by the key 

requirements of today’s IoT systems for adaptability, low-cost 

and scalability, iXen’s architecture is modular and expandable. 

iXen encompasses IoT-A [13][14] design principles in an 

attempt to develop an innovative IoT platform that supports 

generic services and IoT devices (i.e. independent of 

connectivity and not coupled to specific IoT protocols). IoT-A 

proposes an Architecture Reference Model (ARM) defining 

the principles and guidelines for generating IoT architectures, 

providing the means to connect vertically closed systems in the 

communication layer (i.e. where IoT devices interact with the 

system) and service layer (i.e. where services are provided). 

IoT-A and FIWARE compliant architectures may assure that 

generated knowledge will be modular and reusable across 

domain or use-case specific boundaries.  

We followed a state-of-the-art design approach [16] that 

identified functional and non-functional system requirements 

and specifically, (a) functional components and their 

interaction, (b) information that is managed and how it is 

acquired, transmitted, stored and analyzed, (c) different types 

of users and how they interact with the system, (d) 

requirements for assuring data, network and user security and 

privacy. Detail on system design (including a full set of use 

case, activity and deployment UML diagrams) can be found in 

[15]. 

2.1. User Groups 

Each user belongs to a user class. Each user class is 

assigned a role encoding authorization to access other services. 

iXen users have an identifier, an email and a name being 

displayed. The following user groups and functional 

requirements associated with each group are identified: 

System administrators: they configure, maintain and 

monitor the cloud. Except their competence to providing cloud 

services, they are responsible for performing Create, Read, 

Update, Delete (CRUD) operations on (a) users (e.g. they can 

register new users to the system and define their access rights) 

and, (b) devices (e.g. they can register new devices to the 

system). They are responsible for monitoring system 

operations at all times (e.g. monitoring users’ activities). 

Infrastructure owners: they subscribe to the cloud for a fee 

and are granted permission (by the cloud administrator) to 

register, configure, monitor or remove devices in their 

possession. iXen provides functionality for connecting and 

controlling devices over the Web.  

Application owners: they subscribe to the cloud and to a set 

of devices for a fee. Once subscribed to devices they can create 

applications by means of flow-based programming. iXen 

provides query mechanisms for selecting devices of interest 

using device properties such as, device type, location, purpose 

etc.  An application is defined by wiring together the outputs 

of selected devices. 

Customers: they subscribe to applications for a fee. Once 

subscribed to an application they are granted access to the 

application over the Web.  iXen provides query mechanisms 

for selecting applications available for subscriptions based on 

criteria such as, location, functionality etc. Customers are 

granted only access right to applications. They issue requests 

to application owners (e.g. for reporting events, issuing 

requests for assistance).  

2.1.1. Information (Class) Diagram 

The class diagram describes the structure of the main 

entities (classes) of the application domain (i.e. the system), 

their properties, operations allowed on these entities and their 

interrelationships. Typically, it is represented as a class (IS_A) 

hierarchy with the most general classes at the top and more 

specific classes (i.e. specializations of general classes) lower in 

the hierarchy. Other types of relationships between classes 

(referred to as “object properties”) can be also defined (e.g. 

“part of”, “have” property relationships). A class is also 

described by a set of attributes (referred to as “data properties”) 

together with a set of operations that can be executed on 

entities of this class. Entities lower in a class hierarchy inherit 

all properties and operations of entities higher in the hierarchy. 

Fig. 2 is the class diagram of iXen in UML. There are different 

types (classes) of users that interact with the system. Each type 

of user is associated with different services that handle 

different types (classes) of information:  

 

 
 

Fig. 2. Class Diagram. 

 
User Class: describes users interacting with the system. 

Each user is described by an identifier (ID), email, and a name 
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being displayed. The class is specialized in three user sub-

categories (sub-classes) namely, administrator, customer and 

infrastructure/application owners. Each user is assigned a role 

(by the administrator) at login. Each user class corresponds to 

a role (represented by a class). A user may have more than one 

role (e.g. can be both customer and application owner at the 

same time).  

 

Authorization class: represents the permission of end-

uses (customers) to access the applications they have 

subscribed. Methods of this class relate to granting 

authorization (e.g. access to services) to users and to assigning 

them a role. All users have a role and access rights which 

correspond to their role (i.e. a customer can create 

subscriptions to application but is not authorized to add 

sensors. A snapshot of this class describes a service request that 

a user is authorized to execute (e.g. for HTTP request GET: 

“http://host/example”).   
 

Role class: the system automatically assigns a role to a 

user when he/she subscribes to an application in order to obtain 

permission to access its endpoint. Methods of this class relate 

to creating and assigning a role to users. A   snapshot of this 

class corresponds to an authorization, so when a user is 

assigned a role she/he becomes the holder of the corresponding 

authorization.  

 
XACML Rule class: represents an access control policy 

which defines the access rights of a user. A snapshot of this 

class is an XACML7  file (i.e. a vendor neutral declarative 

access control policy language based on XML) which defines 

the rules for granting users access to services based on their 

role.  

 
Application Class: Represents applications that have 

been created by application developers. A snapshot of this 

class contains information about an application (i.e. the unique 

identifier, a description of its functionality, date of creation and 

owner). An application can belong to exactly one application 

developer. 

 

Executable flow class: represents applications which are 

defined by wiring together IoT devices and services. A 

snapshot of this class is a description of the behavior of an 

application, as a synthesis of predefined processes that 

exchange data using predefined connections.  A snapshot of 

this class always corresponds to a snapshot of application class. 

 
Application subscription class: A user who needs access 

to an application must first subscribe to it. A snapshot of this 

class is associated with exactly one user and declares 

applications that the user has subscribed. A user may also 

subscribe to additional applications in which case new 

applications are added to her/his subscription.   

 

Sensor subscription class: an application owner 

(developer) is entitled to create new applications by selecting 

IoT devices from the list of devices that she/he has subscribed. 

A snapshot of this class is associated with exactly one 

application user (i.e. application owner) and contains the 

sensors that the user has subscribed. A user may also subscribe 

 
7  https://fiware-tutorials.readthedocs.io/en/latest/administrating-

xacml/index.html  
8 https://estimote.com 

to additional devices in which case new devices are added to 

her/his sensor subscription snapshot.   

 

Sensor class: represents the models of all sensors. A snapshot 

of this class provides information about sensors installed in 

iXen and are available for subscription. This includes sensor 

name and identifier and the location where the sensor is 

installed.   

 

Proximity Beacon class: it represents the special model 

(proximity beacon) of the sensors used in iXen. We use off-

the-shelf Estimote8  beacon sensors that use Bluetooth Low 

Energy 9  (BLE) wireless protocol to communicate 

measurements of ambient temperature, lighting and 

atmospheric pressure. 

 

History Data class: represents data acquired by sensors 

and stored in a database. The time series created are stored 

either as (a) raw (unprocessed) values as received from devices 

and, (b) aggregated (processed) values (i.e.  maximum, 

minimum and average values over predefined time intervals).  

A snapshot of this class corresponds to one sensor and can be 

used in applications. Methods of the class implement 

functionality for storage and retrieval of raw and aggregate 

data. 

2.2. Activity Diagrams 

 

A series of activity diagrams are defined for responding to 

different use case scenarios for different types of users [15]. In 

the following scenario, an application developer logs into iXen 

and subscribes to sensors. After successful login the user 

searches for installed sensors (e.g. using keywords or by 

browsing). The system displays the JSON-LD descriptions of 

sensors matching the selection criteria and the user is opted to 

create subscriptions to one or more sensors. Confirmed 

subscriptions are recorded and stored an XACML file. Fig. 3 

illustrates this sequence of actions.  

 

9  https://www.bluetooth.com/learn-about-bluetooth/bluetooth-

technology/radio-versions/  

https://fiware-tutorials.readthedocs.io/en/latest/administrating-xacml/index.html
https://fiware-tutorials.readthedocs.io/en/latest/administrating-xacml/index.html
https://estimote.com/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/
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Fig. 3. Subscribing to sensors.  

 

In the next scenario, an application developer creates an 

application using sensors following the sequence of actions 

illustrated by Fig. 4. After successful login, the user selects 

sensors to be included in the application mashup and specifies 

the type of actions to be applied on the supplied measurements 

(e.g. average temperature value over 24 hours intervals). The 

query selection process is similar to that of Fig. 3. However, 

the query addresses only the list of sensors on which the user 

has subscribed. The application is then stored in the 

applications database.  

 

 
 

Fig. 4. Creating an application.  
 

 
10 https://catalogue-server.fiware.org/enablers/backend-device-

management-idas 

In the next scenario, a customer subscribes to an existing 

application. After login, the user is prompted to input a query 

using keywords. The applications can be searched by category 

or by functionality (e.g. indoors or environmental monitoring) 

or by browsing. Fig. 5 illustrates the above sequence of actions.  

 

 
 

Fig. 5. Searching applications for creating subscriptions.  

 

 

2.3 Architecture  

 
iXen is designed as a composition of autonomous RESTful 

micro-services communicating with each other over HTTP. 

They are organized in groups of services.  The services within 

a group are implemented in the same VM. Network delays are 

expected due to the nature of this design. However, as shown 

in Sec. 3, iXen is capable of responding in real time under 

heavy workloads. Fig 6 illustrates iXen architecture. In the 

following, groups of services implementing the same 

functionality are discussed together. 

 

2.3.1 Sensor Services  

 

IoT devices are connected to iXen using Sensor interface 

service. It collects data from gateways (where sensors are 

connected) using an IoT IP protocol (e.g. MQTT, CoAP). It is 

implemented using the IDAS backend device maagement 10 

service of Fiware.  It is the only service which is affected by 

the property of devices to use a specific protocol. Following 

Sensor interface service, data are communicated in NGSI11 a 

data exchange format based on JSON. It is the standard of the 

EU or handling context information. It describes information 

being exchanged and entities involved (e.g. sensors that 

publish measurements and users or services 

that subscribe to this information).   

The Sensor interface service publishes IoT context 

information to Publish-Subscribe service in NGSI format. 

11https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EU+Stan

dards  

https://catalogue-server.fiware.org/enablers/backend-device-management-idas
https://catalogue-server.fiware.org/enablers/backend-device-management-idas
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EU+Standards
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EU+Standards
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Only devices  registered to this service can publish data to 

iXen. ORION Context Broker 12 is a reference implementation  

 

Fig. 6.  iXen architecture.  

of this service and the service standard of the EU for handling 

context information. Publish-Subscribe service receives 

measurements from devices registered to Sensor interface 

service and makes this information available to other services 

and users based on subscriptions. Sensors register to Publish-

Subscribe service as NGSI “public entities” and users or other 

services can subscribe to these entities to get notified on value 

changes or, when new values become available. Each time a 

new sensor registers to iXen, a new entity is created in Publish-

Subscribe service. Each time a new sensor value becomes 

available, this component is updated and a notification is sent 

to entities subscribed to the sensor. The service holds the most 

recent values from all registered sensors (i.e. current values are 

stored in a non-SQL database). History (past) measurements 

are forwarded to Data storage service and from there to 

History database. 

 

2.3.2 Database Services 

 

iXen implements databases for devices, device data, users 

and applications. Access is facilitated by database interface 

services.  Database and database interface services in Fig 6 are 

illustrated in green color.  

Publish-Subscribe storage holds (in NGSI format) 

published context and subscription information (e.g.  devices 

that publish data, active subscriptions to devices) and, 

descriptions of IoT devices along with their most recent 

measurements. It is implemented using MongoDB13 (i.e.  it 

suits better than a relational database to the semi-structured 

nature of this information). Requests addressing this 

information are issued by the Sensors query service using a 

(close to) natural language syntax involving custom data types 

(defined in iXen), attribute values and conditional operators 

(i.e. “and”, “or”, “not”, “equals”, “less”, “greater than” etc.). 

Alternatively, query formulation is facilitated by a graphical 

user interface providing query forms and the user is prompted 

to select properties and query operators. Before submitted to 

Publish-Subscribe storage, queries are parsed and are 

translated to equivalent MongoDB queries involving iXen data 

types using Mongo Query Generator14. 

 
12 
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Orion+Co
ntext+Broker  

Table 1 shows data types (i.e. for devices and their 

properties) to be used by Sensors query service for hiding the 

complexity of MongoDB queries. The following query will 

retrieve temperature and humidity measurements acquired by 

weather sensors installed in the city of Chania: 

 

(observes:temperature || observes:humidity) && isModel == 

``Estimote beacon" $$ isInCity == ``Chania''. 

 

The equivalent MongoDB query is:  

 

‘$and’ : [ ’$or’ : [‘attribute.temperature’: ‘$exists’:true, 

‘attribute.humidity’: ‘$exists’ : true],  

attribute.Model.value: ‘$eq’ : “Estimote beacons”, 

attribute.Location.metadata.City.value: ‘$eq’ : 'Chania’  ]. 

 
Table 1. Data types and properties to be used in user queries. 

Data type Property 

isModel Device type (e.g. “proximity beacon”) 

Observes Value type (e.g. “temperature, humidity”) 

isInCity Where (e.g. “Chania”) 

Owner Infrastructure owner (e.g. “Estimote”)   

When Date, time or time interval (e.g. “15/4/2019”) 

 

Data storage service collects data flows (history values) 

from Publish-Subscribe service. The time series created from 

the history of data are stored in   History database as (a) raw 

(unprocessed) values as received from devices and, (b) 

aggregated (processed) values (i.e. statistics).  More 

specifically, maximum, minimum and average values over 

predefined time intervals (e.g. every hour, day, week etc.) are  

stored. The Data storage service is implemented using 

Cygnus15, the EU standard for handling history of context data 

in NGSI format.  

The History database is implemented using MongoDB. 

The History query service provides a query interface to the 

History database: query requests are expressed using the 

syntax explained earlier and are translated to MongoDB 

queries. 

Application storage is a non-relational database that 

holds information for applications available to customers for 

subscriptions. They are created by application owners using 

Mashup service. Applications are stored in JSON in a non-

relational database (i.e. MongoDB). Similar to Sensors query 

service, the database can be searched by properties (i.e. using 

the data types of Table 1), by name or by owner. Alternatively, 

a list with all applications can be displayed (together with their 

descriptions) and the user is prompted to select applications for 

subscription.   

The User database is a relational (MySQL) database 

which holds user’s login and authorization information (i.e. 

users profile data, roles, session information and session 

history). For each user, ownership and subscription 

information is also stored (i.e.  customers subscribing to 

applications, application owners subscribing to sensors, 

infrastructure owners providing sensors for subscription). 

Before a user submits a service request, his/her role (i.e. a token 

corresponding to a role) is retrieved and attached in the header 

of the request. Subsequently, the token will be checked by the 

target service to verify that the user has the right to access the 

service (the mechanism is described in Sec. 2.3.5). 

 

13 https://www.mongodb.com  
14 https://www.npmjs.com/package/mongo-query-generator  
15 https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Cygnus  

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Orion+Context+Broker
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Orion+Context+Broker
https://www.mongodb.com/
https://www.npmjs.com/package/mongo-query-generator
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Cygnus
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2.3.3 Mashup services  

 

Application owners are entitled to create new 

applications.  The service is realized with the aid of Node-

Red16, an open-source flow-based programming tool for the 

IoT allowing for defining applications as a sequence of 

customizable templates selected from a list. Applications are 

defined as a sequence of four steps namely, Endpoint, 

Functionality, Calculations and Response. The name and IP 

address of the service being created, as well as the REST 

methods (notably GET, PUT, POST) for accessing the service 

are declared in Endpoint. The application is defined as a 

composition of methods (i.e. functions) receiving inputs from 

specific devices which are declared in Functionality. 

Calculations contains the implementation of the methods (i.e. 

the software) declared in Functionality. The methods 

implemented in Calculations provide current values and value 

statistics (i.e. average, minimum and maximum values over 1 

hour, 24 hours, week and month). Finally, Response specifies 

a URL where the output will be forwarded (typically the 

address of an application on the Web). Each step forwards 

information to the next. The application is stored as a JSON 

entity in Application storage (i.e. a MongoDb). Fig 7 declares 

Functionality of IntelligenceLab application [15] which 

computes the maximum (over 24 hours) temperature values 

from sensors 1, 2 and minimum (over 24 hours) humidity 

values from sensors 3 and 4.  

In order to select sensors to be used in an application, the 

user issues query to Sensors query service. The query is 

translated to MongoDB syntax and is forwarded to Publish-

Subscribe storage. Typically, an application will operate on 

history data by the selected sensors. The application of Fig. 7 

will retrieve maximum and minimum values of temperature 

and humidity over the last 24 hours from History database. The 

output will be generated in HTML/Javascript and will be 

displayed on a Web interface using Google Charts17. Fig. 8 

illustrates the output of this query. 

 

 
 

Fig. 7. Declaring an application using Node-Red. 

 

 
16 https://nodered.org  
17 https://developers.google.com/chart  
18 https://keyrock.docs.apiary.io/#reference/keyrock-api/role  

 
 

Fig. 8. Web interface showing average temperature over 24 hours. 

 

2.3.4 Application logic 

 

Its purpose is to orchestrate, control and execute services 

running in the cloud. When a request is received (from a user 

or service), it is dispatched to the appropriate service.  First, a 

user logs in to iXen using a login name and password.  The user 

is then assigned a role (by the cloud administrator) and receives 

a token encoding his/her access rights (i.e. authorization to 

access iXen services). This is a responsibility of the User 

identification and authorization service.  Each time application 

logic dispatches the request to another service, the token is 

attached to the header of the request.  It is a responsibility of 

the security mechanism to approve (or reject) the request. In 

iXen all public services are protected by a security mechanism 

(Sec. 2.3.5). 

User requests are issued on the Web interface (e.g. 

application owners can issue queries for available devices and 

subscribe to selected devices, customers can issue queries to 

select applications available for subscriptions).  

 

2.3.5 Security services  

 

They implement access control to services based on user 

roles and access policies. Initially, users register to iXen to 

receive a login name, a password and a role (i.e. customer, 

application owner, or infrastructure owner) encoding user's 

access rights. This is a responsibility of the cloud 

administrator. Once a user is logged-in, he/she is assigned an 

OAuth2 token encoding his/her identity.  The token remains 

active during a session.  A session is initialized at login and 

remains active during a time interval which is also specified in 

advance. A new token is issued every time a new session is 

initiated (e.g. at next user login). User respective user access 

rights are described by means of XACML (i.e. a vendor neutral 

declarative access control policy language based on XML). 

Keyrock identity manager 18  is an implementation of this 

service. 

For each user, a XACML file is stored in Authorization 

Policy Decision Point (PDP)19 service.  Services offering a 

public interface (i.e. typically SOA services) are protected by 

a security mechanism (i.e. they do not expose their interface to 

the Web without protection). Fig. 6 illustrates five protected 

services and their corresponding security services (in red 

color). This security mechanism is realized by means of Policy 

Enforcement Proxy (PEP)20 service.  Each public service is 

protected by a separate PEP service (stored in the same VM 

with the service). It is a responsibility of this service to approve 

or reject a request to the protected service. Each user request is 

19 https://authzforce-ce-fiware.readthedocs.io/en/release-5.1.2/  
20 https://fiware-pep-proxy.readthedocs.io/en/latest/  

https://nodered.org/
https://developers.google.com/chart
https://keyrock.docs.apiary.io/#reference/keyrock-api/role
https://authzforce-ce-fiware.readthedocs.io/en/release-5.1.2/
https://fiware-pep-proxy.readthedocs.io/en/latest/
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forwarded to Application logic service which dispatches the 

request to the appropriate service. The security process is 

carried-out by applying the sequence of steps illustrated in Fig. 

9. The request comes with a token in its header. The PEP 

service will check if the token is valid by sending a request to 

User Identification and authorization service. If the token is 

valid (and the session is active), User Identification and 

authorization will respond with user's role. PEP service will 

forward user's role to Authorization PDP service which stores 

the XACML files for all users. The decision whether the user 

is authorized to access the protected service will be determined 

by evaluating the XACML file. This process is carried-out by 

Authorization PDP service which will respond to PEP service 

with a decision.  If the request is approved, it is forwarded to 

the protected service. 

 

 
 

Fig. 9. Protecting a service with an OAuth2 token.  

 

Not all services accept requests by users. There are also 

services which are accessible by other services only. They are 

distinguished from other protected services because they are 

not directly connected with Application logic. These services 

are protected by a security key, referred to as  

master key. In this case, PEP service stores the master key. 

Only requests with the correct key in their header can access 

the protected service. The mechanism is illustrated in Fig. 10.   

In Fig. 6, Sensor interface, Mashup and Data Storage services 

are protected using a master key. 

 

Fig. 10. Protecting a service with an OAuth2 master key. 

2.3.6 Access to Services  

In relation to the layered architecture (Fig. 1) and user 

roles (classes), system administrators can access all of services 

in any layer.   Administrators are also entitled to insert, update 

or remove users (infrastructure owners, application owners or 

customers) provided that they do not have subscriptions to 

devices or applications (otherwise, prior to deleting a user, they 

are prompted to remove their subscriptions).   

Sensor services are available to infrastructure owners and 

administrators for adding, removing devices and for 

monitoring the operation of connected devices.  However, 

infrastructure owners can only control devices in their 

possession. No such restriction applies to administrators (they 

control all devices connected to iXen).  

Database services are available to all user classes. In 

particular, application owners can subscribe to existing devices 

for creating new applications. Customers can only subscribe to 

applications (and not directly to sensors) through 

subscriptions.  

Mashup services are available to application owners and 

to customers (for subscribing to mashups). Finally, security 

services (i.e. assigning users a role) are available to system 

administrators only. Application logic services are not directly 

associated to any user role (class). 

2.3.7 Implementation  

The implementation is in line with the layered design of 

Fig. 1.  All user services are projected on the Web interface in 

layer 3 and can be selected from a pull-down menu by the users 

depending on their authorization [15]. IoT data processing and 

analysis services (e.g. applications), as well as mashup and 

security services are implemented in layer 2, in the cloud. 

Sensor connectivity with gateways (fog layer) and with the 

cloud is implemented in layer 2, except from the sensor 

interface services (Sec. 2.3.1) which are implemented in layer 

1.   

iXen is deployed in 5 (small flavor) VMs. Each one has 

one processor (x86_64 processor architecture, 2,800MHz), 

2,048MB RAM, 20GB hard drive, runs Ubuntu 14.04 and an 

Apache HTTP server. The first VM runs Publish-Subscribe, 

Sensor query and Sensor interface services. The second VM 

runs Mashup, Application storage and User Identification and 

Authorization services. The third VM runs History database 

and History query services. The fourth VM runs Data storage, 

Application logic services and the Web application. The fifth 

VM runs Authorization PDP service. Each service is protected 

by a dedicated PEP service installed in the same VM. 

 

3. Performance Evaluation 
 

 A high-level smart-home user case scenario and 

evaluation of an earlier version of the architecture is described 

in [17].  Because a large infrastructure (e.g. a smart city) with 

thousands of sensors installed (e.g. at homes or the 

environment) is not available to us, we had to rely on 

simulations for the evaluation. The purpose of the following 

experiment is to evaluate the performance if iXen under stress 

(i.e. up to 2,000 requests out of which, 100 are executed in 

parallel). In [15] we run a series of experiments simulating 

different system conditions and user needs (i.e. 2,000 requests, 

and up to 250 users issuing requests concurrently).  

There are 10 BLE Estimote beacon sensors transmitting 

(each one) 100 temperature and humidity measurements per 

hour (24,000 per day). The sensors connect to a gateway (i.e. a 

mobile device) and from there, sensor measurements are 

transferred to Sensor interface service in the cloud. The sensors 

are registered to Publish-Subscribe service of iXen. The 

History database consists of two data sets, one with raw (i.e. 

unprocessed) measurements and one with statistical values (i.e. 

minimum, maximum, values) taken every hour.   

In order to run a more realistic experiment we created a 

much bigger dataset with measurements from 2,000 simulated 

sensors. Each simulated sensor produces pseudo-random 

measurements in the same value range and form as a real 

sensor. In this set-up (with all actual and simulated sensors in 
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place), the History database contains more than 50 Million 

measurements. 

Table 2 summarizes the performance of the most 

representative operations. ApacheBench 21  is used to stress 

iXen with 2,000 simultaneous requests (for each operation), 

100 of which are executed in parallel (simulating the case of 

100 concurrent users). All measurements of time reported 

below are averages over 2,000 requests. CPU utilization is 

almost 100% for all requests. Resource usage metrics are taken 

using the Linux htop command. All measurements of time 

reported below account also for the time spent for the 

communication between VMs or between services within the 

same VM (i.e. network delays are expected due to the nature 

of SOA   design).  

User requests are issued on the Web interface and are 

forwarded to Application logic. From there, they are 

dispatched to the appropriate iXen services. All operations 

address storage services:  operations 1, 2 and 3 address 

Publish-Subscribe or Publish-Subscribe storage services; 

operation 4 address History query and History database 

services; operations 5, 6, 7 and 8 address Mashup and 

Application storage services.  The responses follow the same 

path to the Web interface in reverse order. More extensive 

results are reported in [15]. For each request in Table 2, 

response times improve with the simultaneous execution of 

requests (i.e. the Apache HTTP server switches to 

multitasking) reaching their lowest values for concurrency 

between 50 and 150. Even with concurrency = 250 the average 

execution time per request is close to real-time in most cases. 

 
Table 2. Performance of basic iXen operations for 2,000 requests 

and concurrency = 100. 

No. Request Time (ms) RAM (GB) 

1 Get temperature and 

humidity sensors 

12.5 1.32 

2 Get current 

temperature of a sensor 

7.12 0.67 

3 Get sensors in a 

specific location 

6.80 0.61 

4 Get maximum 

temperature of a sensor 

6.10 0.68 

5 Get user subscription 

to applications 

6.80 0.60 

6 Create subscription to 

application 

6.63 0.61 

7 Get application 

information 

3.86 0.49 

8 Create a new 

application 

49.8 1.32 

  

An important observation is that almost 15% of the time 

reported in Table 2 accounts for security checks (i.e. for 

validating user authorization credentials).    

 

4. Conclusions and Future Work  

 

iXen exhibits all desirable features of platforms design 

and implementation such as openness and expandability (i.e. 

new services can be added to iXen, even third-party ones), 

advanced connectivity for the vast diversity of devices, 

security (i.e. access to data and services is granted only to 

authorized users or services based on access policies) and, 

smart application development using flow-based 

programming. iXen design relies on the most recent EU 

 
21 https://httpd.apache.org/docs/2.4/programs/ab.html  

standards for context information (i.e. information related to 

user’s interaction with an application) management and IoT 

systems design. Besides being open, modular and expandable, 

iXen can support a business logic and become self-sustainable. 

iXen is currently being extended to support billing 

policies and functionality for dealing with complex events. 

Incorporating scalability features for dealing with increased 

workloads is an important direction for future work. A possible 

solution would be deploying iXen in Kubernetes and a 

serverless environment. Transforming iXen to multi-edge 

cloud (MEC) architecture for dealing with distributed IoT 

deployments at the edges of the network and incorporating 

trust evaluation mechanisms for dealing with internal risks [4] 

is underway. HTTPS protocol will eventually replace HTTP as 

a secure solution for the transmission of confidential 

information. Securing the IoT network for handing risks due to 

malicious behavior of IoT devices is still an open issue.  
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