
 Journal of Ubiquitous Systems & Pervasive Networks

Volume 14, No. 2 (2021) pp. 01-10

* Corresponding author. Tel.: +302821037229

Fax: +302821037542; E-mail: petrakis@intelligence.tuc.gr

© 2020 International Association for Sharing Knowledge and Sustainability.

DOI: 10.5383/JUSPN.14.02.001
1

iXen: Secure Service Oriented Architecture and Context Information
Management in the Cloud

Euripides G.M. Petrakis*, Xenofon Koundourakis

School of Electrical and Computer Engineering, Technical University of Crete (TUC),

Chania, Crete, Greece

Abstract

iXen's ambition is to overcome the limits of existing IoT platforms in the cloud and deal with challenges of security

and interoperability. Therefore, iXen is interoperable and expandable (i.e. services can be added or removed) while being

secure by design: access to services is granted only to authorized users (or other services) based on user roles and access

policies. Leveraging principles of Service Oriented Architectures (SOA) and the most recent EU standards for context

information management, iXen is implemented as a composition of RESTful micro-services in the cloud. iXen adopts a

3-tier architecture design model. The first layer supports connectivity of the vast diversity of IoT devices with the cloud.

The second (middle) layer implements IoT data functionality including, database, security and context management

services allowing devices to publish information and, users (or other services) subscribed to devices to get notified about

the availability of this information. Flow-based programming services in the middle layer allow fast development of new

applications by wiring together IoT devices and services. The third layer makes IoT applications available to customers

based on subscriptions. The experimental analysis shows that iXen is responding in real-time to complex service requests

under heavy workloads.

Keywords: Cloud, IoT, Service Oriented Architecture, Micro-Services, Context Management, Flow-Based Programming

1. Introduction

Cloud is the ideal environment for IoT applications

deployment due to reasons related to its affordability (no up-

front investment, low operation costs), scalability, easy

maintenance and accessibility. Cloud platforms facilitating IoT

application development are known to exist and many are

available as commercial products [1]. These are highly

configurable solutions and capable of making strong

commitments (by means of SLAs) for meeting the needs of

Quality of Service (QoS) critical applications. However, these

solutions are fully proprietary and vendor specific and as such,

they do not support interoperability with third party systems

and services. Research should go beyond these limits and

towards more open, secure and re-configurable IoT platforms.

Securing IoT infrastructures is a challenging task.

Potential risks and counter-measures for dealing with security

have been identified by the industry, by regulatory entities and

the literature [2]. The principles of Security by Design and,

Security and Privacy by Default [3] must be applied since the

design phase of a system. The cloud infrastructure is exposed

to risks due unauthorized attempts to access services. These are

handled successfully with the aid of traditional security

methods (e.g. encryption, authorization, auditing). However,

1 https://eugdpr.org

an IoT system is also vulnerable due to malicious devices

operating at the edge of the network.

The security mechanisms for the cloud must be

complemented with trust evaluation methods for dealing with

these risks [4]. This creates new challenges for dealing with the

cause and point of system failure if security fails [5]. The

Industrial Internet Consortium (IIC) [6] emphasizes the need

for monitoring devices, networks, applications and the cloud.

Solutions to malicious behavior or malfunction detection,

suggest continuous monitoring of, the state of IoT nodes, of the

cloud components or, periodically monitoring system logs or,

all of the above. The General Data Protection Regulation

(GDPR)1 of the EU has a significant impact on IoT systems

design. Data protection is also crucial, as potential intrusion

may not only lead to vulnerable personal data theft but may

risk system operation overall.

iXen focuses on securing the cloud infrastructure from

unauthorized access to services and data. Securing the IoT

network is outside the scope of this paper. Building upon our

previous work on IoT architecture design and implementation

[2][7] based on Service Oriented Architectures (SOA) [12] and

cloud micro-services 2 , iXen's ambition is to overcome the

limits of existing IoT architectures in the cloud and deal with

challenges of security, openness and interoperability. iXen

architecture is highly configurable and modular and supports

generation of fully customizable applications by re-using

2 https://aws.amazon.com/microservices/

mailto:petrakis@intelligence.tuc.gr
https://eugdpr.org/
https://aws.amazon.com/microservices/

Author et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 01-10

2

services and devices. Leveraging flow-based programming [8],

new applications can be generated with the aid of user-friendly

interfaces. The interest of a developer in sensors and services

for composing a new application is expressed by means of

queries specifying the desired device and service properties.

iXen services are re-usable, implement fundamental

functionality and offer a public interface allowing secure

connections with other services (even third-party ones).

Therefore, iXen is interoperable and expandable (i.e. services

can be added or removed) while being secure by design: all

services are protected by an OAuth2.03 mechanism. Access to

services is granted only to authorized users (or authorized

services) based on user roles and access policies. This

mechanism is realized as a synthesis of security micro-services

which are both, generic and re-usable (i.e. the same mechanism

is applied for securing all services offered by the platform).

iXen features an elaborate 3-tier architecture design

model. Each layer implements functionality addressing the

needs of different users’ type, namely infrastructure owners

(i.e. device owners), application owners (i.e. applications

developers) and customers (who subscribe to applications).

The same user may have more than one role in iXen.

Infrastructure owners are entitled to install and make devices

available to application owners which, in turn, subscribe to

devices in order to create applications; finally, customers (i.e.

end-users) subscribe to applications.

The first level of the architecture allows devices to

connect to iXen in the cloud. Captured data from devices are

encrypted and streamed to the cloud. iXen is capable of

handling large collections of devices of any type. This is the

only part of the system which is affected by the property of a

device (e.g. a sensor) to use a specific IoT protocol (e.g.

Bluetooth, Zigbee). The rest of the system is sensor agnostic

(i.e. data are processed in JSON which is a sensor agnostic

format). The second (middle) layer implements advanced data

processing functionality including, database, security, flow-

based programming for creating applications and, event-driven

publish-subscribe (i.e. context) services allowing devices to

publish information and users (or other services) to be notified

when this information becomes available (i.e. only subscribed

users or services get notified). The third layer makes

applications available to customers based on subscriptions.

Devices and applications are easily discoverable by means of

user-friendly query mechanisms (a feature which is of

particular interest for large scale IoT systems).

Fig. 1 illustrates an example 3-tier system structure, the

physical entities and their interaction: (a) four devices in layer

1 connect to gateways and from there to the cloud. The

application owner in layer 2 makes three applications available

to customers in layer 3. The customer in layer 3 subscribes to

one application. Leveraging this 3-layer design, iXen is ready

to incorporate a business logic (e.g. billing policies) for

different types of users and become self-sustainable. All users

may benefit from their participation in iXen based on their

offerings or be charged based on a pay-per-use cost model or,

based on their subscriptions to cloud services (left as future

work).

iXen is a research prototype and as such, it is not intended

to compete with existing commercial platforms in terms of

services offering or performance, but rather, to show how a

cost effective and self-sustainable IoT eco-system can be

designed based on principles of SOA design and cloud micro-

3 https://oauth.net/2/
4 https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EU+Stan

dards

services, using well established, open-source technologies.

iXen design relies on the most recent EU standards4 for context

information management and IoT systems design. iXen

prototype is implemented in OpenStack and Fiware5, the open-

source distributed cloud infrastructure of the EU.

Fig. 1. iXen 3-tier design.

iXen is application agnostic allowing a wide range of IoT

devices (e.g. sensors and gateways) to connect to the cloud.

iXen is implemented as a composition of modular cloud micro-

services implementing fundamental functionalities and

communicating with each other using REST [11]. More

services can be added on demand or, any service can be

replaced or moved to a different Virtual Machine (VM) (on the

same or on a different cloud) with minimum overhead (i.e. only

the IP of the service will change).

In regards to similar work, iXen concept resembles DIAT

model [10], an IoT architecture for addressing the challenges

of device and service interoperability, extendibility and

security. DIAT layered architecture comprises of three layers

(referred to as Virtual Object, Composite Virtual Object and

Service layer). Similar to iXen and SOA, DIAT decouples

services into independent modules and binds similar

functionalities together in different layers. DIAT applies a

powerful yet very expensive (in terms of complexity and

speed) security policy and defines a new model for expressing

users privacy and authorization using ontologies. In contrast,

iXen is opted for the state-of-art-approach for expressing role-

based user authorization based on XAMC6. DIAT is positively

evaluated as a model but it is neither a cloud nor a Service-

Oriented Architecture. It is not accompanied by

implementation and its performance has not been assessed in

a real setting. In contrast, iXen, relies on a Service Oriented

Architecture in order to handle the issues of modularity,

extendibility, re-usability and security.

We run an exhaustive set of experiments using real and

simulated (but realistic) data aiming to evaluate both, iXen

response time and scalability. We stressed iXen with high data

streams and many simultaneous requests. The experimental

analysis shows that iXen is capable of responding in real-time

under heavy workloads (i.e. many users applying several

requests per second).

The rest of this paper is structured as follows: issues

related to iXen design and implementation are discussed in

Sec. 2 followed by an analysis of performance in Sec. 3.

Conclusions and issues for future work are discussed in Sec. 4.

5 https://www.fiware.org
6 https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml

https://oauth.net/2/
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EU+Standards
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EU+Standards
https://www.fiware.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

Author et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 01-10

3

2. Design and Architecture

iXen is a novel Future Internet (FI) cloud service for data

collection from IoT devices in an automatic, generalized and

modular way. Building upon principles of Service Oriented

Architectures (SOA) design [12] and driven by the key

requirements of today’s IoT systems for adaptability, low-cost

and scalability, iXen’s architecture is modular and expandable.

iXen encompasses IoT-A [13][14] design principles in an

attempt to develop an innovative IoT platform that supports

generic services and IoT devices (i.e. independent of

connectivity and not coupled to specific IoT protocols). IoT-A

proposes an Architecture Reference Model (ARM) defining

the principles and guidelines for generating IoT architectures,

providing the means to connect vertically closed systems in the

communication layer (i.e. where IoT devices interact with the

system) and service layer (i.e. where services are provided).

IoT-A and FIWARE compliant architectures may assure that

generated knowledge will be modular and reusable across

domain or use-case specific boundaries.

We followed a state-of-the-art design approach [16] that

identified functional and non-functional system requirements

and specifically, (a) functional components and their

interaction, (b) information that is managed and how it is

acquired, transmitted, stored and analyzed, (c) different types

of users and how they interact with the system, (d)

requirements for assuring data, network and user security and

privacy. Detail on system design (including a full set of use

case, activity and deployment UML diagrams) can be found in

[15].

2.1. User Groups

Each user belongs to a user class. Each user class is

assigned a role encoding authorization to access other services.

iXen users have an identifier, an email and a name being

displayed. The following user groups and functional

requirements associated with each group are identified:

System administrators: they configure, maintain and

monitor the cloud. Except their competence to providing cloud

services, they are responsible for performing Create, Read,

Update, Delete (CRUD) operations on (a) users (e.g. they can

register new users to the system and define their access rights)

and, (b) devices (e.g. they can register new devices to the

system). They are responsible for monitoring system

operations at all times (e.g. monitoring users’ activities).

Infrastructure owners: they subscribe to the cloud for a fee

and are granted permission (by the cloud administrator) to

register, configure, monitor or remove devices in their

possession. iXen provides functionality for connecting and

controlling devices over the Web.

Application owners: they subscribe to the cloud and to a set

of devices for a fee. Once subscribed to devices they can create

applications by means of flow-based programming. iXen

provides query mechanisms for selecting devices of interest

using device properties such as, device type, location, purpose

etc. An application is defined by wiring together the outputs

of selected devices.

Customers: they subscribe to applications for a fee. Once

subscribed to an application they are granted access to the

application over the Web. iXen provides query mechanisms

for selecting applications available for subscriptions based on

criteria such as, location, functionality etc. Customers are

granted only access right to applications. They issue requests

to application owners (e.g. for reporting events, issuing

requests for assistance).

2.1.1. Information (Class) Diagram

The class diagram describes the structure of the main

entities (classes) of the application domain (i.e. the system),

their properties, operations allowed on these entities and their

interrelationships. Typically, it is represented as a class (IS_A)

hierarchy with the most general classes at the top and more

specific classes (i.e. specializations of general classes) lower in

the hierarchy. Other types of relationships between classes

(referred to as “object properties”) can be also defined (e.g.

“part of”, “have” property relationships). A class is also

described by a set of attributes (referred to as “data properties”)

together with a set of operations that can be executed on

entities of this class. Entities lower in a class hierarchy inherit

all properties and operations of entities higher in the hierarchy.

Fig. 2 is the class diagram of iXen in UML. There are different

types (classes) of users that interact with the system. Each type

of user is associated with different services that handle

different types (classes) of information:

Fig. 2. Class Diagram.

User Class: describes users interacting with the system.

Each user is described by an identifier (ID), email, and a name

Author et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 01-10

4

being displayed. The class is specialized in three user sub-

categories (sub-classes) namely, administrator, customer and

infrastructure/application owners. Each user is assigned a role

(by the administrator) at login. Each user class corresponds to

a role (represented by a class). A user may have more than one

role (e.g. can be both customer and application owner at the

same time).

Authorization class: represents the permission of end-

uses (customers) to access the applications they have

subscribed. Methods of this class relate to granting

authorization (e.g. access to services) to users and to assigning

them a role. All users have a role and access rights which

correspond to their role (i.e. a customer can create

subscriptions to application but is not authorized to add

sensors. A snapshot of this class describes a service request that

a user is authorized to execute (e.g. for HTTP request GET:

“http://host/example”).

Role class: the system automatically assigns a role to a

user when he/she subscribes to an application in order to obtain

permission to access its endpoint. Methods of this class relate

to creating and assigning a role to users. A snapshot of this

class corresponds to an authorization, so when a user is

assigned a role she/he becomes the holder of the corresponding

authorization.

XACML Rule class: represents an access control policy

which defines the access rights of a user. A snapshot of this

class is an XACML7 file (i.e. a vendor neutral declarative

access control policy language based on XML) which defines

the rules for granting users access to services based on their

role.

Application Class: Represents applications that have

been created by application developers. A snapshot of this

class contains information about an application (i.e. the unique

identifier, a description of its functionality, date of creation and

owner). An application can belong to exactly one application

developer.

Executable flow class: represents applications which are

defined by wiring together IoT devices and services. A

snapshot of this class is a description of the behavior of an

application, as a synthesis of predefined processes that

exchange data using predefined connections. A snapshot of

this class always corresponds to a snapshot of application class.

Application subscription class: A user who needs access

to an application must first subscribe to it. A snapshot of this

class is associated with exactly one user and declares

applications that the user has subscribed. A user may also

subscribe to additional applications in which case new

applications are added to her/his subscription.

Sensor subscription class: an application owner

(developer) is entitled to create new applications by selecting

IoT devices from the list of devices that she/he has subscribed.

A snapshot of this class is associated with exactly one

application user (i.e. application owner) and contains the

sensors that the user has subscribed. A user may also subscribe

7 https://fiware-tutorials.readthedocs.io/en/latest/administrating-

xacml/index.html
8 https://estimote.com

to additional devices in which case new devices are added to

her/his sensor subscription snapshot.

Sensor class: represents the models of all sensors. A snapshot

of this class provides information about sensors installed in

iXen and are available for subscription. This includes sensor

name and identifier and the location where the sensor is

installed.

Proximity Beacon class: it represents the special model

(proximity beacon) of the sensors used in iXen. We use off-

the-shelf Estimote8 beacon sensors that use Bluetooth Low

Energy 9 (BLE) wireless protocol to communicate

measurements of ambient temperature, lighting and

atmospheric pressure.

History Data class: represents data acquired by sensors

and stored in a database. The time series created are stored

either as (a) raw (unprocessed) values as received from devices

and, (b) aggregated (processed) values (i.e. maximum,

minimum and average values over predefined time intervals).

A snapshot of this class corresponds to one sensor and can be

used in applications. Methods of the class implement

functionality for storage and retrieval of raw and aggregate

data.

2.2. Activity Diagrams

A series of activity diagrams are defined for responding to

different use case scenarios for different types of users [15]. In

the following scenario, an application developer logs into iXen

and subscribes to sensors. After successful login the user

searches for installed sensors (e.g. using keywords or by

browsing). The system displays the JSON-LD descriptions of

sensors matching the selection criteria and the user is opted to

create subscriptions to one or more sensors. Confirmed

subscriptions are recorded and stored an XACML file. Fig. 3

illustrates this sequence of actions.

9 https://www.bluetooth.com/learn-about-bluetooth/bluetooth-

technology/radio-versions/

https://fiware-tutorials.readthedocs.io/en/latest/administrating-xacml/index.html
https://fiware-tutorials.readthedocs.io/en/latest/administrating-xacml/index.html
https://estimote.com/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/

Author et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 01-10

5

Fig. 3. Subscribing to sensors.

In the next scenario, an application developer creates an

application using sensors following the sequence of actions

illustrated by Fig. 4. After successful login, the user selects

sensors to be included in the application mashup and specifies

the type of actions to be applied on the supplied measurements

(e.g. average temperature value over 24 hours intervals). The

query selection process is similar to that of Fig. 3. However,

the query addresses only the list of sensors on which the user

has subscribed. The application is then stored in the

applications database.

Fig. 4. Creating an application.

10 https://catalogue-server.fiware.org/enablers/backend-device-

management-idas

In the next scenario, a customer subscribes to an existing

application. After login, the user is prompted to input a query

using keywords. The applications can be searched by category

or by functionality (e.g. indoors or environmental monitoring)

or by browsing. Fig. 5 illustrates the above sequence of actions.

Fig. 5. Searching applications for creating subscriptions.

2.3 Architecture

iXen is designed as a composition of autonomous RESTful

micro-services communicating with each other over HTTP.

They are organized in groups of services. The services within

a group are implemented in the same VM. Network delays are

expected due to the nature of this design. However, as shown

in Sec. 3, iXen is capable of responding in real time under

heavy workloads. Fig 6 illustrates iXen architecture. In the

following, groups of services implementing the same

functionality are discussed together.

2.3.1 Sensor Services

IoT devices are connected to iXen using Sensor interface

service. It collects data from gateways (where sensors are

connected) using an IoT IP protocol (e.g. MQTT, CoAP). It is

implemented using the IDAS backend device maagement 10

service of Fiware. It is the only service which is affected by

the property of devices to use a specific protocol. Following

Sensor interface service, data are communicated in NGSI11 a

data exchange format based on JSON. It is the standard of the

EU or handling context information. It describes information

being exchanged and entities involved (e.g. sensors that

publish measurements and users or services

that subscribe to this information).

The Sensor interface service publishes IoT context

information to Publish-Subscribe service in NGSI format.

11https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EU+Stan

dards

https://catalogue-server.fiware.org/enablers/backend-device-management-idas
https://catalogue-server.fiware.org/enablers/backend-device-management-idas
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EU+Standards
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EU+Standards

Author et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 01-10

6

Only devices registered to this service can publish data to

iXen. ORION Context Broker 12 is a reference implementation

Fig. 6. iXen architecture.

of this service and the service standard of the EU for handling

context information. Publish-Subscribe service receives

measurements from devices registered to Sensor interface

service and makes this information available to other services

and users based on subscriptions. Sensors register to Publish-

Subscribe service as NGSI “public entities” and users or other

services can subscribe to these entities to get notified on value

changes or, when new values become available. Each time a

new sensor registers to iXen, a new entity is created in Publish-

Subscribe service. Each time a new sensor value becomes

available, this component is updated and a notification is sent

to entities subscribed to the sensor. The service holds the most

recent values from all registered sensors (i.e. current values are

stored in a non-SQL database). History (past) measurements

are forwarded to Data storage service and from there to

History database.

2.3.2 Database Services

iXen implements databases for devices, device data, users

and applications. Access is facilitated by database interface

services. Database and database interface services in Fig 6 are

illustrated in green color.

Publish-Subscribe storage holds (in NGSI format)

published context and subscription information (e.g. devices

that publish data, active subscriptions to devices) and,

descriptions of IoT devices along with their most recent

measurements. It is implemented using MongoDB13 (i.e. it

suits better than a relational database to the semi-structured

nature of this information). Requests addressing this

information are issued by the Sensors query service using a

(close to) natural language syntax involving custom data types

(defined in iXen), attribute values and conditional operators

(i.e. “and”, “or”, “not”, “equals”, “less”, “greater than” etc.).

Alternatively, query formulation is facilitated by a graphical

user interface providing query forms and the user is prompted

to select properties and query operators. Before submitted to

Publish-Subscribe storage, queries are parsed and are

translated to equivalent MongoDB queries involving iXen data

types using Mongo Query Generator14.

12
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Orion+Co
ntext+Broker

Table 1 shows data types (i.e. for devices and their

properties) to be used by Sensors query service for hiding the

complexity of MongoDB queries. The following query will

retrieve temperature and humidity measurements acquired by

weather sensors installed in the city of Chania:

(observes:temperature || observes:humidity) && isModel ==

``Estimote beacon" $$ isInCity == ``Chania''.

The equivalent MongoDB query is:

‘$and’ : [’$or’ : [‘attribute.temperature’: ‘$exists’:true,

‘attribute.humidity’: ‘$exists’ : true],

attribute.Model.value: ‘$eq’ : “Estimote beacons”,

attribute.Location.metadata.City.value: ‘$eq’ : 'Chania’].

Table 1. Data types and properties to be used in user queries.

Data type Property

isModel Device type (e.g. “proximity beacon”)

Observes Value type (e.g. “temperature, humidity”)

isInCity Where (e.g. “Chania”)

Owner Infrastructure owner (e.g. “Estimote”)

When Date, time or time interval (e.g. “15/4/2019”)

Data storage service collects data flows (history values)

from Publish-Subscribe service. The time series created from

the history of data are stored in History database as (a) raw

(unprocessed) values as received from devices and, (b)

aggregated (processed) values (i.e. statistics). More

specifically, maximum, minimum and average values over

predefined time intervals (e.g. every hour, day, week etc.) are

stored. The Data storage service is implemented using

Cygnus15, the EU standard for handling history of context data

in NGSI format.

The History database is implemented using MongoDB.

The History query service provides a query interface to the

History database: query requests are expressed using the

syntax explained earlier and are translated to MongoDB

queries.

Application storage is a non-relational database that

holds information for applications available to customers for

subscriptions. They are created by application owners using

Mashup service. Applications are stored in JSON in a non-

relational database (i.e. MongoDB). Similar to Sensors query

service, the database can be searched by properties (i.e. using

the data types of Table 1), by name or by owner. Alternatively,

a list with all applications can be displayed (together with their

descriptions) and the user is prompted to select applications for

subscription.

The User database is a relational (MySQL) database

which holds user’s login and authorization information (i.e.

users profile data, roles, session information and session

history). For each user, ownership and subscription

information is also stored (i.e. customers subscribing to

applications, application owners subscribing to sensors,

infrastructure owners providing sensors for subscription).

Before a user submits a service request, his/her role (i.e. a token

corresponding to a role) is retrieved and attached in the header

of the request. Subsequently, the token will be checked by the

target service to verify that the user has the right to access the

service (the mechanism is described in Sec. 2.3.5).

13 https://www.mongodb.com
14 https://www.npmjs.com/package/mongo-query-generator
15 https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Cygnus

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Orion+Context+Broker
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Orion+Context+Broker
https://www.mongodb.com/
https://www.npmjs.com/package/mongo-query-generator
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Cygnus

Author et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 01-10

7

2.3.3 Mashup services

Application owners are entitled to create new

applications. The service is realized with the aid of Node-

Red16, an open-source flow-based programming tool for the

IoT allowing for defining applications as a sequence of

customizable templates selected from a list. Applications are

defined as a sequence of four steps namely, Endpoint,

Functionality, Calculations and Response. The name and IP

address of the service being created, as well as the REST

methods (notably GET, PUT, POST) for accessing the service

are declared in Endpoint. The application is defined as a

composition of methods (i.e. functions) receiving inputs from

specific devices which are declared in Functionality.

Calculations contains the implementation of the methods (i.e.

the software) declared in Functionality. The methods

implemented in Calculations provide current values and value

statistics (i.e. average, minimum and maximum values over 1

hour, 24 hours, week and month). Finally, Response specifies

a URL where the output will be forwarded (typically the

address of an application on the Web). Each step forwards

information to the next. The application is stored as a JSON

entity in Application storage (i.e. a MongoDb). Fig 7 declares

Functionality of IntelligenceLab application [15] which

computes the maximum (over 24 hours) temperature values

from sensors 1, 2 and minimum (over 24 hours) humidity

values from sensors 3 and 4.

In order to select sensors to be used in an application, the

user issues query to Sensors query service. The query is

translated to MongoDB syntax and is forwarded to Publish-

Subscribe storage. Typically, an application will operate on

history data by the selected sensors. The application of Fig. 7

will retrieve maximum and minimum values of temperature

and humidity over the last 24 hours from History database. The

output will be generated in HTML/Javascript and will be

displayed on a Web interface using Google Charts17. Fig. 8

illustrates the output of this query.

Fig. 7. Declaring an application using Node-Red.

16 https://nodered.org
17 https://developers.google.com/chart
18 https://keyrock.docs.apiary.io/#reference/keyrock-api/role

Fig. 8. Web interface showing average temperature over 24 hours.

2.3.4 Application logic

Its purpose is to orchestrate, control and execute services

running in the cloud. When a request is received (from a user

or service), it is dispatched to the appropriate service. First, a

user logs in to iXen using a login name and password. The user

is then assigned a role (by the cloud administrator) and receives

a token encoding his/her access rights (i.e. authorization to

access iXen services). This is a responsibility of the User

identification and authorization service. Each time application

logic dispatches the request to another service, the token is

attached to the header of the request. It is a responsibility of

the security mechanism to approve (or reject) the request. In

iXen all public services are protected by a security mechanism

(Sec. 2.3.5).

User requests are issued on the Web interface (e.g.

application owners can issue queries for available devices and

subscribe to selected devices, customers can issue queries to

select applications available for subscriptions).

2.3.5 Security services

They implement access control to services based on user

roles and access policies. Initially, users register to iXen to

receive a login name, a password and a role (i.e. customer,

application owner, or infrastructure owner) encoding user's

access rights. This is a responsibility of the cloud

administrator. Once a user is logged-in, he/she is assigned an

OAuth2 token encoding his/her identity. The token remains

active during a session. A session is initialized at login and

remains active during a time interval which is also specified in

advance. A new token is issued every time a new session is

initiated (e.g. at next user login). User respective user access

rights are described by means of XACML (i.e. a vendor neutral

declarative access control policy language based on XML).

Keyrock identity manager 18 is an implementation of this

service.

For each user, a XACML file is stored in Authorization

Policy Decision Point (PDP)19 service. Services offering a

public interface (i.e. typically SOA services) are protected by

a security mechanism (i.e. they do not expose their interface to

the Web without protection). Fig. 6 illustrates five protected

services and their corresponding security services (in red

color). This security mechanism is realized by means of Policy

Enforcement Proxy (PEP)20 service. Each public service is

protected by a separate PEP service (stored in the same VM

with the service). It is a responsibility of this service to approve

or reject a request to the protected service. Each user request is

19 https://authzforce-ce-fiware.readthedocs.io/en/release-5.1.2/
20 https://fiware-pep-proxy.readthedocs.io/en/latest/

https://nodered.org/
https://developers.google.com/chart
https://keyrock.docs.apiary.io/#reference/keyrock-api/role
https://authzforce-ce-fiware.readthedocs.io/en/release-5.1.2/
https://fiware-pep-proxy.readthedocs.io/en/latest/

Author et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 01-10

8

forwarded to Application logic service which dispatches the

request to the appropriate service. The security process is

carried-out by applying the sequence of steps illustrated in Fig.

9. The request comes with a token in its header. The PEP

service will check if the token is valid by sending a request to

User Identification and authorization service. If the token is

valid (and the session is active), User Identification and

authorization will respond with user's role. PEP service will

forward user's role to Authorization PDP service which stores

the XACML files for all users. The decision whether the user

is authorized to access the protected service will be determined

by evaluating the XACML file. This process is carried-out by

Authorization PDP service which will respond to PEP service

with a decision. If the request is approved, it is forwarded to

the protected service.

Fig. 9. Protecting a service with an OAuth2 token.

Not all services accept requests by users. There are also

services which are accessible by other services only. They are

distinguished from other protected services because they are

not directly connected with Application logic. These services

are protected by a security key, referred to as

master key. In this case, PEP service stores the master key.

Only requests with the correct key in their header can access

the protected service. The mechanism is illustrated in Fig. 10.

In Fig. 6, Sensor interface, Mashup and Data Storage services

are protected using a master key.

Fig. 10. Protecting a service with an OAuth2 master key.

2.3.6 Access to Services

In relation to the layered architecture (Fig. 1) and user

roles (classes), system administrators can access all of services

in any layer. Administrators are also entitled to insert, update

or remove users (infrastructure owners, application owners or

customers) provided that they do not have subscriptions to

devices or applications (otherwise, prior to deleting a user, they

are prompted to remove their subscriptions).

Sensor services are available to infrastructure owners and

administrators for adding, removing devices and for

monitoring the operation of connected devices. However,

infrastructure owners can only control devices in their

possession. No such restriction applies to administrators (they

control all devices connected to iXen).

Database services are available to all user classes. In

particular, application owners can subscribe to existing devices

for creating new applications. Customers can only subscribe to

applications (and not directly to sensors) through

subscriptions.

Mashup services are available to application owners and

to customers (for subscribing to mashups). Finally, security

services (i.e. assigning users a role) are available to system

administrators only. Application logic services are not directly

associated to any user role (class).

2.3.7 Implementation

The implementation is in line with the layered design of

Fig. 1. All user services are projected on the Web interface in

layer 3 and can be selected from a pull-down menu by the users

depending on their authorization [15]. IoT data processing and

analysis services (e.g. applications), as well as mashup and

security services are implemented in layer 2, in the cloud.

Sensor connectivity with gateways (fog layer) and with the

cloud is implemented in layer 2, except from the sensor

interface services (Sec. 2.3.1) which are implemented in layer

1.

iXen is deployed in 5 (small flavor) VMs. Each one has

one processor (x86_64 processor architecture, 2,800MHz),

2,048MB RAM, 20GB hard drive, runs Ubuntu 14.04 and an

Apache HTTP server. The first VM runs Publish-Subscribe,

Sensor query and Sensor interface services. The second VM

runs Mashup, Application storage and User Identification and

Authorization services. The third VM runs History database

and History query services. The fourth VM runs Data storage,

Application logic services and the Web application. The fifth

VM runs Authorization PDP service. Each service is protected

by a dedicated PEP service installed in the same VM.

3. Performance Evaluation

 A high-level smart-home user case scenario and

evaluation of an earlier version of the architecture is described

in [17]. Because a large infrastructure (e.g. a smart city) with

thousands of sensors installed (e.g. at homes or the

environment) is not available to us, we had to rely on

simulations for the evaluation. The purpose of the following

experiment is to evaluate the performance if iXen under stress

(i.e. up to 2,000 requests out of which, 100 are executed in

parallel). In [15] we run a series of experiments simulating

different system conditions and user needs (i.e. 2,000 requests,

and up to 250 users issuing requests concurrently).

There are 10 BLE Estimote beacon sensors transmitting

(each one) 100 temperature and humidity measurements per

hour (24,000 per day). The sensors connect to a gateway (i.e. a

mobile device) and from there, sensor measurements are

transferred to Sensor interface service in the cloud. The sensors

are registered to Publish-Subscribe service of iXen. The

History database consists of two data sets, one with raw (i.e.

unprocessed) measurements and one with statistical values (i.e.

minimum, maximum, values) taken every hour.

In order to run a more realistic experiment we created a

much bigger dataset with measurements from 2,000 simulated

sensors. Each simulated sensor produces pseudo-random

measurements in the same value range and form as a real

sensor. In this set-up (with all actual and simulated sensors in

Author et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 01-10

9

place), the History database contains more than 50 Million

measurements.

Table 2 summarizes the performance of the most

representative operations. ApacheBench 21 is used to stress

iXen with 2,000 simultaneous requests (for each operation),

100 of which are executed in parallel (simulating the case of

100 concurrent users). All measurements of time reported

below are averages over 2,000 requests. CPU utilization is

almost 100% for all requests. Resource usage metrics are taken

using the Linux htop command. All measurements of time

reported below account also for the time spent for the

communication between VMs or between services within the

same VM (i.e. network delays are expected due to the nature

of SOA design).

User requests are issued on the Web interface and are

forwarded to Application logic. From there, they are

dispatched to the appropriate iXen services. All operations

address storage services: operations 1, 2 and 3 address

Publish-Subscribe or Publish-Subscribe storage services;

operation 4 address History query and History database

services; operations 5, 6, 7 and 8 address Mashup and

Application storage services. The responses follow the same

path to the Web interface in reverse order. More extensive

results are reported in [15]. For each request in Table 2,

response times improve with the simultaneous execution of

requests (i.e. the Apache HTTP server switches to

multitasking) reaching their lowest values for concurrency

between 50 and 150. Even with concurrency = 250 the average

execution time per request is close to real-time in most cases.

Table 2. Performance of basic iXen operations for 2,000 requests

and concurrency = 100.

No. Request Time (ms) RAM (GB)

1 Get temperature and

humidity sensors

12.5 1.32

2 Get current

temperature of a sensor

7.12 0.67

3 Get sensors in a

specific location

6.80 0.61

4 Get maximum

temperature of a sensor

6.10 0.68

5 Get user subscription

to applications

6.80 0.60

6 Create subscription to

application

6.63 0.61

7 Get application

information

3.86 0.49

8 Create a new

application

49.8 1.32

An important observation is that almost 15% of the time

reported in Table 2 accounts for security checks (i.e. for

validating user authorization credentials).

4. Conclusions and Future Work

iXen exhibits all desirable features of platforms design

and implementation such as openness and expandability (i.e.

new services can be added to iXen, even third-party ones),

advanced connectivity for the vast diversity of devices,

security (i.e. access to data and services is granted only to

authorized users or services based on access policies) and,

smart application development using flow-based

programming. iXen design relies on the most recent EU

21 https://httpd.apache.org/docs/2.4/programs/ab.html

standards for context information (i.e. information related to

user’s interaction with an application) management and IoT

systems design. Besides being open, modular and expandable,

iXen can support a business logic and become self-sustainable.

iXen is currently being extended to support billing

policies and functionality for dealing with complex events.

Incorporating scalability features for dealing with increased

workloads is an important direction for future work. A possible

solution would be deploying iXen in Kubernetes and a

serverless environment. Transforming iXen to multi-edge

cloud (MEC) architecture for dealing with distributed IoT

deployments at the edges of the network and incorporating

trust evaluation mechanisms for dealing with internal risks [4]

is underway. HTTPS protocol will eventually replace HTTP as

a secure solution for the transmission of confidential

information. Securing the IoT network for handing risks due to

malicious behavior of IoT devices is still an open issue.

References

[1] Petrakis EGM, Sotiriadis S Soultanopoulos T,

Tsiachri Renta P, Buyya R, Bessis N. Internet of

Things as a Service (iTaaS): Challenges and

Solutions for Management of Sensor Data on the

Cloud and the Fog. Internet of Things Journal.

September 2018; pp. 156-174.

https://www.sciencedirect.com/science/article/pii/S

2542660518300350,,

https://doi.org/10.1016/j.iot.2018.09.009

[2] Radoglou Grammatikis PI, Sarigiannidis PG,
Moscholios ID. Securing the internet of things.
Securing the Internet of Things: Challenges,
Threats and Solutions. Internet of Things Journal.

March 2019; pp. 41-70.
https://www.sciencedirect.com/science/article
/pii/S2542660518301161
https://doi.org/10.1016/j.iot.2018.11.003

[3] Cavoukian A, M. Dixon M. Privacy and Security by

Design: An Enterprise Architecture Approach. September

2013. https://www.ipc.on.ca/wp-

content/uploads/Resources/pbd-privacy-and-security-by-

design-oracle.pdf

[4] Wang T, Zhang S, Liu A, and Z. A. Bhuiyan ZA, Jin

Q. A Secure IoT Service Architecture with an

Efficient Balance Dynamics Based on Cloud and

Edge Computing. September 2018; pp. 4831-4843.

https://ieeexplore.ieee.org/document/8464241

https://doi.org/10.1109/JIOT.2018.2870288

[5] Garfinkel T, Rosenblum M. A Virtual Machine

Introspection-Based Architecture for Intrusion Detection.

Proceedings of Network and Distributed Systems Security

Symposium (NDSS). February 2003; pp. 191-206.

https://www.ndss-symposium.org/ndss2003/virtual-

machine-introspection-based-architecture-intrusion-

detection

[6] Industrial Internet Consortium (ICC). Industrial Internet of

Things Volume G4: Security Framework. September 2016.

https://www.iiconsortium.org/IISF.htm

[7] Douzis K, and Sotiriadis S, Petrakis EGM, Amza C.

Modular and Generic IoT Management on the

Cloud. Future Generation Computer Systems

https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.sciencedirect.com/science/article/pii/S2542660518300350
https://www.sciencedirect.com/science/article/pii/S2542660518300350
https://www.sciencedirect.com/science/article/pii/S2542660518301161
https://www.sciencedirect.com/science/article/pii/S2542660518301161
https://doi.org/10.1016/j.iot.2018.11.003
https://www.ipc.on.ca/wp-content/uploads/Resources/pbd-privacy-and-security-by-design-oracle.pdf
https://www.ipc.on.ca/wp-content/uploads/Resources/pbd-privacy-and-security-by-design-oracle.pdf
https://www.ipc.on.ca/wp-content/uploads/Resources/pbd-privacy-and-security-by-design-oracle.pdf
https://ieeexplore.ieee.org/document/8464241
https://doi.org/10.1109/JIOT.2018.2870288
https://www.ndss-symposium.org/ndss2003/virtual-machine-introspection-based-architecture-intrusion-detection
https://www.ndss-symposium.org/ndss2003/virtual-machine-introspection-based-architecture-intrusion-detection
https://www.ndss-symposium.org/ndss2003/virtual-machine-introspection-based-architecture-intrusion-detection
https://www.iiconsortium.org/IISF.htm

Author et. al. / Journal of Ubiquitous Systems & Pervasive Networks, 2 (2021) 01-10

10

(FGCS). January 2018; pp. 369-378.

https://www.sciencedirect.com/science/article/pii/S

0167739X16301662

https://doi.org/10.1016/j.future.2016.05.041

[8] Azzola F. IoT Visual Programming Tools. DZone, IoT

Zone, White paper. https://dzone.com/articles/iot-and-the-

iot-visual-programming-tools

[9] IoT Analytics. IoT Platforms: The Central Backbone for

the Internet of Things. November 2015. https://iot-

analytics.com/product/iot-platforms-white-paper/

[10] Sarkar C, Uttama Nambi A, VeVenkatesha Prasad R,

Rahim A, Neisse R, Baldini G. DIAT: A Scalable

Distributed Architecture for IoT. IEEE Internet of

Things Journal. June 2015; pp. 230-239.

https://ieeexplore.ieee.org/document/7000513 ,
https://doi.org/10.1109/JIOT.2014.2387155

[11] Schreier S. Modelling Restful Applications.

Proceedings of ACM International Workshop on

RESTful Design (WS-REST'11). March 2011; pp.

15-21.

https://dl.acm.org/doi/10.1145/1967428.1967434,
https://doi.org/10.1145/1967428.1967434

[12] Erl T. SOA Principles of Service Design. Upper Saddle

River, NJ, USA: Prentice Hall. 2007.

https://dl.acm.org/citation.cfm?id=1296147

[13] Bassi A, Bauer M, Fiedler M, Kramp T, Kranenburg

R, Lange S, Meissner S. Enabling Things to Talk:

Designing IoT Solutions with the IoT Architectural

Reference Model. Springer, Heidelberg. 2013.

https://www.springer.com/gp/book/9783642404023
https://doi.org/10.1007/978-3-642-40403-0

[14] Preventis A, Stravoskoufos K, Sotiriadis S, Petrakis
EGM. IoT-A and FIWARE: Bridging the Barriers
Between the Cloud and IoT Systems Design and
Implementation. Proceeding of Cloud Computing
and Services Science (CLOSER), 2016; pp. 146-153.
http://www.gbv.de/dms/tib-ub-
hannover/871309920.pdf
https://doi.org/10.5220/0005912001460153

[15] Koundourakis X. Design and Implementation of Service

Oriented Architecture for Deploying IoT Applications in

the Cloud. Diploma Thesis, School of ECE, Technical

University of Crete (TUC), Chania, Greece. February

2019.

http://www.intelligence.tuc.gr/index.php?module=view&

class=publication_file&id=572

[16] Rozanski N, Woods E. Software Systems Architecture:

Working with Stakeholders Using Viewpoints and

Perspectives. Addison-Wesley, 2nd Edition, 2012.

https://www.viewpoints-and-

perspectives.info/home/book/

[17] Euripides G.M. Petrakis, George Myrizakis: iHome:

Secure Smart Home Management in the Cloud and the

Fog, in Edge Computing for Massive Parallel Processing

of IoT Data Streams, Fatos Xhafa, Arun Kumar Sangaiah

(Eds). Vol 35: Advances in Parallel Computing, IOS Press,

pp. 237-263, 2020.

http://www.intelligence.tuc.gr/~petrakis/publications/iHo

me-IOS.pdf

https://www.sciencedirect.com/science/article/pii/S0167739X16301662
https://www.sciencedirect.com/science/article/pii/S0167739X16301662
https://dzone.com/articles/iot-and-the-iot-visual-programming-tools
https://dzone.com/articles/iot-and-the-iot-visual-programming-tools
https://iot-analytics.com/product/iot-platforms-white-paper/
https://iot-analytics.com/product/iot-platforms-white-paper/
https://ieeexplore.ieee.org/document/7000513
https://doi.org/10.1109/JIOT.2014.2387155
https://dl.acm.org/doi/10.1145/1967428.1967434
https://doi.org/10.1145/1967428.1967434
https://dl.acm.org/citation.cfm?id=1296147
https://www.springer.com/gp/book/9783642404023
http://www.gbv.de/dms/tib-ub-hannover/871309920.pdf
http://www.gbv.de/dms/tib-ub-hannover/871309920.pdf
https://doi.org/10.5220/0005912001460153
http://www.intelligence.tuc.gr/index.php?module=view&class=publication_file&id=572
http://www.intelligence.tuc.gr/index.php?module=view&class=publication_file&id=572
https://www.viewpoints-and-perspectives.info/home/book/
https://www.viewpoints-and-perspectives.info/home/book/
http://www.intelligence.tuc.gr/~petrakis/publications/iHome-IOS.pdf
http://www.intelligence.tuc.gr/~petrakis/publications/iHome-IOS.pdf

