c proceedings
Pythia: A Neural Model for Data Prefetching
Akshay Arun Bapat Saravanan Nick Koudas
University of Toronto Thirumuruganathan University of Toronto

akshay.bapat@mail.utoronto.ca

koudas@cs.toronto.edu

sthirumuruganathan@acm.org

ABSTRACT

Machine learning is increasingly pervading all the components
of a RDBMS so that they can be instance-optimized by leverag-
ing correlations in query workloads and data distributions. So
far, it has achieved significant success in cardinality estimation
and query optimization leading to faster query execution. How-
ever, there has been limited effort on optimization of the RDBMS
buffer management module. Accurately predicting page accesses
poses a number of challenges. We overcome these challenges and
propose PYTHIA, a neural predictive model that can accurately
predict non-sequential page accesses of complex SQL queries.
The output of PyTHIA could then be used to prefetch the pages
thereby improving performance. In addition, we also integrate
PyTHIA into the buffer management module of Postgres. It can
intelligently perform predictions and prefetching when appro-
priate and defaults to the existing buffer management algorithm
when it is not. We conduct extensive experiments and demon-
strate that PyTHIA achieves significant accuracy and a speedup
of upto 6x for queries in the DSB OLAP benchmark.

1 INTRODUCTION

Traditional databases are often general-purpose software sys-
tems that are typically not built for a specific workload or a data
distribution. In general, these systems might provide good perfor-
mance but probably not the optimal one. Recently, there has been
a push towards leveraging machine learning based techniques to
build database systems that are self-tuned or instance-optimized
[19, 20, 32]. If the queries issued in the underlying database sys-
tems are not completely random, but exhibit certain correlations,
then tailoring the design of the underlying infrastructure to ex-
ploit such correlations offers significant performance advantages
[17]. In this paper we adopt a similar view and explore the pos-
sibilities of tailoring the RDBMS buffer management module to
certain query workloads.

Learning query access patterns. Access patterns in databases
are challenging to predict and influenced by numerous factors
such as selectivity, join algorithm etc. Use of indexes also results
in irregular sequences which have been found to be notoriously
intractable in other domains (like memory accesses) [30]. Our
empirical analysis shows that we cannot reuse or adapt tech-
niques proposed previously. These approaches use NLP based
LSTM [8, 15] or transformers [33] and formulate it as a sequence
prediction problem.

Overview of PyTHIA. PYTHIA is tailored to predict access pat-
terns of complex correlated query workloads. Empirically, we
found that there are differences in performance speedup even for
a single query. PyTHIA achieves significant speedup when the
query involves a large number of non-sequential reads. This is

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

384

not surprising as both the RDBMS and OS already provide op-
timized access by leveraging various read-ahead heuristics. We
validate this hypothesis using a simple experiment. We use a rep-
resentative query workload from DSB benchmark (see Section 5
for more details). The queries involve a mixture of sequential
and non-sequential reads. We assume the availability of an or-
acle that provides us with the exact sequence of block accesses
for the query. The prefetcher then asynchronously retrieves the
blocks and put them in the buffer pool. We evaluate two vari-
ants of the algorithm - one where we only prefetch the blocks
accessed in a sequential scan and in another we prefetch only
the non-sequentially read blocks. Figure 1 shows that PyTHIA
achieves significantly better results for non-sequential reads as
the support for prefetching such block accesses is limited. For se-
quential scans, the default OS prefetch assists the buffer manager
rendering the importance of predictions less effective.

Speedup
N
p

%

Sequential

Non-Sequential

Figure 1: Prefetching Sequential vs Non-Sequential Reads

Summary of Contributions.

e We introduce PYTHIA, a neural ML model to predict the ac-
cess patterns of complex correlated query workloads. We
formulate this as a multi-label, multi-class classification
problem that enables practical downstream prefetching.

e We show that it is possible and feasible to incorporate
PyTHiA inside the buffer manager of Postgres. It can intel-
ligently prefetch pages asynchronously when appropriate
and falls back on the existing mechanisms when not.

e We conduct a thorough experimental evaluation utilizing
standard benchmarks and at scale. Our results indicate
that PyTHIA offers substantial benefits and achieves as
much as 6x speedup for queries involving non-sequential
reads.

2 PRELIMINARIES

Query Workload. Let W = {Q1,0Q2,...,0n} be a workload
consisting of n queries involving one or more relations over a
static database. We assume that these queries have similar access
patterns. The queries could be semantically related (instances of
the same query template) or exhibit similar access patterns (as
measured using Jaccard coefficient). We assume that the queries

10.48786/edbt.2025.31

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.31

have been characterized into one or more workloads using prior
work such as [26]. In the rest of the paper, for ease of exposition,
we discuss how to build PyTHIA models for a single workload. In
the presence of multiple workloads, the same approach would
be replicated independently to each of the workloads.

Query Trace. When a query is executed, a sequence of disk
blocks from all the relations in the query and any applicable
auxiliary structures (such as indices) is generated. For each query
in the workload, we invoke the query and obtain the sequence.
This collection of traces from workload ‘W is used to train PyTHIA
models.

Goal of PyTHIA. Given a query workload ‘W and the corre-
sponding query trace for each query in ‘W. The goal of PyTHIA
is to train a predictive model such that it can accurately output
the block accesses for an unseen query from ‘W. An unseen
query for a workload ‘W is a query that belongs to ‘W but was
not used to train PyTHIA models. Unseen queries can have a
different access pattern from all the queries we use to train the
model with. An out-of-distribution query for a workload ‘W
is a query that does not belong to “W. PyTHIA does not affect
out-of-distribution queries.

3 PREDICTING QUERY ACCESS PATTERNS

We first describe how NLP based techniques fall short when pre-
dicting data access patterns and then describe PyTHIA’s approach.

3.1 Prediction using NLP based Techniques

There has been extensive work on using NLP based techniques
for predicting access patterns [1, 14, 30, 38]. Typically, they model
this as a sequence prediction problem where the goal is to pre-
dict next page access given the previous K ones. Our empirical
analysis shows that NLP based methods are not appropriate for
predicting data access patterns of queries for prefetching for
following reasons.

1. Sequential Nature of Prediction. NLP models output the se-
quence one token at a time each requiring an expensive inference
step. For large models, the inference time is non-trivial.

2. Large output token size. The length of page access sequences for
a large relation could easily range in millions. Even SoTA mod-
els such as GPT-4 cannot accurately predict more than million
tokens.

3. Sensitivity to Query Predicates. Another significant bottleneck
is that page access patterns could drastically vary based on tiny
perturbations to queries because of different query plans.

4. Distributional Properties for Page Access Sequences. NLP models
struggle to learn long-tail knowledge [16, 22]. Accuracy tends
to be higher for tokens that are frequent compared to terms
that are infrequent [5, 27, 31]. Vast majority of the pages in a
relation are infrequently accessed. For example, less than 2%
of the pages from template 18 of DSB are retrieved more than
10 times across 1000 query instances. Under these conditions,
accurate prediction either requires substantially large models
(with billions of parameters allowing memorization) or large
amount of training epochs (tens of thousands) to enable retention.
For a detailed discussion of the desired distributional properties,
please refer to [7, 10, 25, 29].

385

3.2 Overview of PYTHIA

From Sequence Prediction to Classification. We found that
the high accuracy of NLP based models can be attributed to the
representation learning. We design a hybrid model where we
use NLP models for learning query representations and then use
it to train a traditional (non-NLP) predictive model that is not
constrained by limitations such as vocabulary size and step-wise
inference.

Intuitively, we replace the sequence prediction problem into
a multi-label, multi-class classification problem. We train a pre-
dictive model that accepts a representation of the query and
outputs all the blocks that will be accessed in a single shot. This
reformulation solves a number of issues. First, by treating it as
a classification problem, we can get the output in a single infer-
ence instead of using a sequential approach requiring multiple
inferences. Second, classification models can easily handle large
number of classes. Third, the representation learning ensures
that embeddings of queries with similar access patterns are closer
to each other. In summary, the hybrid approach allows us to have
the best of both worlds.

Of course, this comes with a trade-off as we lose the sequence
information. As we shall show in Section 5, this trade-off is accept-
able as the sequence prediction based models are impractical and
require a large amount of training and inference time. We also
show that the hybrid model that uses the set semantics achieves
excellent performance despite losing the sequence information.
We reiterate that sequence is important for buffer manager to
ensure pages about to be requested are in the buffer with prefetch.
But since predicting sequence information is impractical when
considering prefetch, we try to do the next best thing and show
that even predicting set information is beneficial and provides
significant performance gains.

Components of PyTHIA. PYTHIA consists of two components —
predictor and prefetcher. Given a query, the goal of predictor is
to accurately output the relevant page accesses. Given a set of
block offsets, the prefetcher then asynchronously fetches them
and puts them in the buffer pool. Splitting PYTHIA into these two
components provides a flexible design space. The predictor is
an ML based model while the prefetcher is heuristic based. The
predictor obtains block access sequence for each of the relations
and indexes accessed non-sequentially by a query. Then, the
prefetcher uses sophisticated heuristics for prefetching blocks
from each of the relations and indexes. The prefetcher can coexist
with dedicated buffer managers (such as [39]) or with the default
buffer manager of a RDBMS. Figure 2 illustrates the components
of PYTHIA.

Base Table
Blocks Set

Workload Clustering
Predictor

Figure 2: Overview of PYTHIA

3.3 Predictor and Prefetcher

PyTHIA seeks to train an ML model that can accurately predict
block access patterns for a given query. We train separate classi-
fiers for different database objects accessed by any query. There
are a number of steps involved in training such a model. Al-
gorithm 1 shows the steps to train PyTHIA models. It takes the
training workload ‘W and a list of all database objects DbObj as
input and trains predictive models for W.

Algorithm 1 Training PyTHIA

1: function TRAINPYTHIA('W, DbObj)
2: for all Obj € DbObj do
3: trainingDatagp; < []
for all Q € ‘W do
Collect trace for Q and queryPlan in planTree
output « []
SERIALIZEQUERYPLAN(planT ree, output)
Remove sequential access from trace
Deduplicate trace
for all Obj € DbObj do
Find tracepy; C trace corresponding to Obj
Sort tracepp
Add (output, tracegy) in trainingDatagyp

for all Obj € DbObj do
Train model Mqy oy ; using trainingDatagy, ;

4
5
6:
7:
8
9

10:
11:
12:
13:

14:
15:

Trace Construction. We implement a lightweight instrumenta-
tion module that intercepts and logs the page requests from the
buffer manager. Then for each query in the workload, we collect
the trace of their block accesses (line 5). The unprocessed trace
could be an assorted mix of block accesses from the index(es)
and base tables. Additionally, there exists significant amount of
redundant requests for the same block. For example, in an index
scan, two sibling leaf nodes share the same path from the root
node and hence this path sequence will be repeated in the trace.

We conduct some simple post-processing (line 8-12) over the
collected trace. First, we remove all sequentially accessed blocks
from the trace since we only want to focus on predicting non-
sequential page accesses. Then, we convert the trace into a set
by deduplication. Next, we segregate block accesses based on the
database object they are associated with since we train separate
models for different database objects. For example, a block could
be associated with the base table of some relation or with the
index (if any) over primary key or non key columns of some
relation. Finally, we order the set by sorting it based on their
offsets. The reason for this is that downstream components such
as prefetcher are more effective when prefetching on blocks in
a sorted order. For indexes, this order could correspond to the
ordering of the column on which the index is built. The blocks
of the base table could have an arbitrary order such as the order
of insertion. Of course, it is possible that each of these sequences
(base table vs index) orders the same set of tuples in different
orders. This is immaterial as they will be consumed by different
ML models.

Query Serialization. Query serialization is the process by which
the input query is converted to an appropriate format that can
be consumed by PyTHIA. We focus on serializing the query ex-
ecution plan since it contains information that is sufficiently
predictive of eventual access patterns. A query plan defines a

386

sequence of steps that is used by the RDBMS to retrieve the tuples
that are relevant to the query. It is a tree structure with various
operator nodes for scans (Seq Scan, Index Scan), joins (Nested
Loop, Hash Join), and other operations such as aggregation, sort-
ing and filtering. Algorithm 2 shows the steps to serialize a query
plan into a list of tokens. We perform a preorder traversal (line
6-9) on the plan tree and process each node (line 1-5) by using
relevant information from it such as filter predicate involved, in-
dex being used etc. We can process any query plan that RDBMS
can generate with the above process (including ones from more
complex SQL constructs as they get converted to equivalent plan
by the RDBMS optimizer).

Since we want to predict page accesses, most relevant infor-
mation in the query plan are the scan nodes (that also determine
relation access order) that include the database object name along
with any applicable filter predicates. For scan nodes, we extract
the relation or index name and filter predicate information (line
3-5). For every other node that appears in a query plan, we only
add a token for the node itself (line 7) as they are relevant for
execution order but perhaps not for individual pages. We also
skip some nodes like hashing and sorting as they do not affect
page access order (not shown in Algorithm 2 to keep it simple).
We use specialized tokens to represent each of plan nodes. For
example, special tokens [NL]] and [HJ] represent nested loop
and hash join respectively. We use the tokens [RELN_SEQ] and
[RELN_IDX] to denote sequential table scans and index scans. We
serialize filter predicates as [PRED] colName opName valName
tokens added to the serialized plan. This process is repeated if
the query has multiple predicates.

Algorithm 2 Serialize query plan

1: function SERIALIZEPLANNODE(planNode, out put)
2 Append planNode token to output

3 if planNode is scan node then

4 Append database object name to output

5 Append filter predicates to output

6 else

7 Append node token to output

8: function SERIALIZEQUERYPLAN(planNode, output)
9: SERIALIZEPLANNODE(planNode, out put)

10: for all planNode.child do

1 SERIALIZEQUERYPLAN(planNode.child, output)

Multilabel Classifier. PyTHIA’S predictive model accepts the
serialized query plan (of arbitrary length) as input. All serialized
tokens are embedded onto a feature vector first. This embedding
is also learned during model training. We use an encoder-decoder
architecture where the encoder produces a query vector represen-
tation from the serialized query plan input and the decoder uses
this representation to produce the required page access output.
Figure 3 represents the block diagram of PyTHIA’s multilabel
classifier.

We use a transformer [33] based model as encoder. Trans-
former is a sequence model based on multi-head self-attention
that has achieved significant results in diverse domains including
NLP. The transformer encoder takes the embedded serialized
query plan as input and produces an embedding that is aware
of the functional operators in the query plan and their impact
on the accessed blocks. We use two layers of multi-head self-
attention [33] and finally the last token’s embedding as the final
query representation.

Once the query embedding is obtained, it is used to train a
feedforward neural model as decoder for predicting the block
accesses. A key change in this traditional pipeline is to ensure
that the downstream classifier is a multi-label classifier that can
output any subset of the class labels. Intuitively, we can think
of training n binary classifiers where n is the number of blocks
for a given database object. We use BCEWithLogitsLoss as the
optimization objective.

We train the entire predictive model end-to-end so that the
learned representation is well-suited for access pattern prediction.
We provide additional details about the hyperparameters used to
train the model in Section 5.

The final layer of our model will have as many number of
output nodes as the number of pages in the database object. For a
very large table, this could be huge and could potentially reduce
prediction accuracy without increasing the query embedding
size. To maintain high model accuracy with the same size of
query embedding feature vector, we split large tables into several
smaller partitions and then train one model for each of these
partitions. This is analogous to Postgres partitioning a large table
into multiple disk files. Splitting models not only balances the size
of the embedding vector used per output node but also helps build
specialized models (ones that focus on a specific set of pages)
rather than generic ones. We also use the splitting approach to
have separate base table and index models. Empirically, we found
that this approach produces more accurate models as shown in
Section 5.

Predicted Pages

YES/NO
PAGE 1 |PAGE 2| [PAGE3| [PAGE4 - -rrrrrrrrrerrrrs- PAGE n
(SIGMOID ACTIVATION LAYER)
(FULLY CONNECTED LAYER (800 x TOTAL_PAGES))
(HIDDEN LAYER (100 x 800) J
Feedforward NN g ()ERY EMBEDDING (100 dimensions)
Decoder
Transformer Encoder QUERY
EMBEDDING
[SELF ATTENTION TRANSFORMER ENCODER 2]
[SELF ATTENTION TRANSFORMER ENCODER 1]
EMBED 1 EMBED2 | »vrrrrennnrernnns EMBED k

[EMBEDDING LAYER (TOKEN_SIZE x 100)]

1 f

PLAN TOKEN 1 PLAN TOKEN k

PLAN TOKEN 2
Serialized Query Plan Tokens

Figure 3: Hybrid model of PyTHIA

Inference for a Test Query. Algorithm 3 shows the steps
PyTHIA takes when a test query Q is scheduled to run. It also has
access to all workloads for which PyTHIA has trained a model
along with the corresponding models. We first ensure if Q be-
longs to a workload that PyTHIA has trained a model for (line

387

3,4). If not, PyTHIA does not engage and the query is executed
as it would in the absence of PyTHIA (line 14). Next, we obtain
the query execution plan and serialize the query (line 6,7). For
every non-sequential scan node (index scan), PyTHiA predicts the
block accesses for both the base table and the index (line 8-10).
Finally, all predicted pages are prefetched by the prefetcher (line
11,12). Model inferences can be parallelized for faster processing.
Similarly, the prefetcher does not have to wait for all inferences
to finish. It can start prefetching pages as soon as the predictions
from the first model are ready. Figure 4 illustrates how PyTHIA
performs inference.

Workload
Classification

Retrieve
Workload Models

Postgres

Buffer Pool
Query v‘
Serialization ~

Figure 4: Overview of PYTHIA at inference time

Algorithm 3 PyTHIA inference

1: function PYTHIAINFERENCE(Q, W)

2 Pe<]

3 W «— workload(Q)

4 if W € W then

5 Generate queryPlan for Q in planTree

6 output « []

7 SERIALIZEQUERYPLAN(planTree, output)

8 for all Non-Sequential scan nodes in planTree do
9 output — Mqy — page predictions p

10: add pto P

11:
12:
13:
14:

Use Prefetcher to prefetch P
continue execution of Q

else
Fallback to default execution of Q

Design Considerations. Overall, the predictive model for PyTHIA
is simple and easy to adopt. However, this simple approach was
taken after extensive empirical analysis. We briefly describe some
of the key design choices.

1. Query plan serialization. Passing SQL query string as an input
to the ML model is not appropriate for PYTHIA as two similar
queries on a single relation could have completely different access
patterns (index scan vs sequential scan). A natural alternative is
to pass the serialized query plan as input that has been used by
prior work such as [19, 23]. The query plan contains the join order
and thus table scan order, which affects the blocks being accessed
of a relation. This additional information is used for attention
based transformer encoders. For example, a filter predicate being
applied to a table will highly likely appear in that table’s scan
node, however, it can appear anywhere in the where clause in
the query text.

2. Separate models for Index and Base table access patterns. It might
seem that using a single model for predicting blocks of index and
base tables would be a better choice. However, we found that

splitting them into two models provides various benefits. First, It
is easier to pick a particular index model when multiple indexes
exist for a relation. Second, having two separate models provides
a higher joint accuracy than a single model (as shown in Section
5). Given the repeated amount of referencing of index blocks,
achieving a higher accuracy for index blocks is desirable than
for base table blocks. Third, the number of index table blocks is
much smaller than that of base table pages resulting in a more
compact ML model with faster inference allowing the prefetcher
to begin loading the index blocks that will be heavily referenced
by the buffer manager.

3. Inputs to Index and Base table block predictors. PyTHIA feeds
the same input (serialized query plan) to both the ML models.
Intuitively, it might seem that one could achieve a better accuracy
by using a cascaded approach where the index blocks predicted
by the first classifier is fed to the second classifier. However, we
evaluated and dismissed this approach due to its various defi-
ciencies. First, this approach precludes running both the models
in parallel. Second, the number of index blocks accessed for a
query can vary significantly resulting in a variable input to the
second model. They could also be very large forcing us to split
the second model into multiple models for transformers to be
able to take all the required tokens as input. This makes the sec-
ond model much more complex requiring larger training and
impractical (for prefetching) inference times. Because smaller
inference time is a key goal for prefetch to be practical we discard
this two-staged model so all predictions can be generated in a
one-shot inference.

4. Ignoring query history. Pages accessed by any query are entirely
dependent on the query itself and so query history does not play
any role if we want to predict all accessed pages. After predicting
all pages, we could initiate prefetch of pages that we do not
expect in the buffer. This would require costly set operations and
if any queries are currently running, there might be page swaps
happening that makes any page information stale very quickly. If
we want to completely ignore predicting pages that we expect to
already be present in the buffer because of previous queries we
can use query history when training models. However, this would
require much more extensive training data to be collected which
will be costly. The alternative, is very cheap and also simple to
implement. Training models to predict all pages does not require
query history. When PyTHIA initiates prefetch for any page, if
it is found in the buffer, nothing happens except increasing it’s
use count. Query history of accessed pages for a single query
can be used during prediction of page accesses. This is similar
to sequence based NLP models and have all the issues discussed
before.

Prefetcher. Once the ML model predicts the set of block ac-
cesses, it is fed to a prefetcher. The prefetcher arranges the
predicted blocks in query access order which can be found from
the query plan. PyTHiA prefetcher asynchronously fetches the
blocks and loads them into the buffer pool. PyTHIA’S prefetcher
operates in conjunction with the buffer manager of the RDBMS.
The prefetcher arranges the predicted blocks in the file storage
order. Hence a request for a block with offset i appears before an-
other with offset j if i < j. This also helps the prefetcher with the
OS readahead. It is possible that when the prefetcher is reading in
the file storage order, some of the prefetches are just subsequent
page reads for the same file and due to OS readahead such pages
might exist in the OS buffer already. These pages then only need

388

a copy from OS buffer to RDBMS buffer instead of a disk copy.
This helps the IO workers to finish their tasks fast and do not
affect the main query execution thread.

4 POSTGRES INTEGRATION

In this section, we describe our efforts towards integrating PyTHIA
inside Postgres thereby demonstrating its practicality. While we
integrated PyTHIA with the buffer manager of Postgres, it is
generic enough to be integrated with the buffer manager of other
RDBMS.

Postgres Buffer Management. Like most RDBMS, Postgres
manages its own buffer pool and can only read/write data to a
block present there. Postgres’s read API is always a synchronous
read (buffer hit if found in buffer, memory copy if buffer miss but
present in OS buffer, disk copy if miss in both buffers). This affects
the performance especially for I/O intensive queries. Postgres
relies heavily on OS readahead for achieving better performance
so block reads result in memory copy instead of the costlier disk
copy.

Postgres Query Execution. Query execution in Postgres pro-
ceeds as defined by query plan tree in a top-down manner. The
execution starts with Postgres requesting a tuple from the plan
tree root node. Every node requests a tuple from their children
to process them, finally ending at scan nodes which actually read
the tuple from a table. The execution layer of Postgres holds the
plan tree and logical nodes like join, scan etc. while the access
layer has nodes to process individual physical nodes like table
scan, hash join etc. The tuple requests are first put to the cor-
responding execution layer node which determines the actual
physical node and transmits them to appropriate access layer
physical node.

Asynchronous I/0 Prefetching for Sequential Reads. There
has been preliminary effort in the Postgres open source com-
munity towards building support for asynchronous IO (AIO)
prefetching to boost performance. Our implementation is based
on the AIO development branch that is primarily maintained by
Andres Freund [13]. The implementation is non-trivial and addi-
tional details can be found at [11, 12]. Overall, an AIO tracking
structure is maintained which is responsible for initiating AIO
and returning the page to Postgres once done. It is also smart
to slow down the prefetch if Postgres read rate is slower or in-
crease it otherwise. It does so by maintaining the prefetcher to
be always “readahead window” blocks ahead of the current page
request queue. The “readahead window” and prefetch sequence
can be provided to the AIO structure for it to begin prefetching.
This AIO development branch only handles specific scenarios
like a sequential table scan, where the future access of pages is
fully deterministic. Because of this, it is tightly coupled with
Postgres access layer. AIO structure is only created inside a se-
quential table scan access layer node which is only active during
the corresponding sequential scan. Secondly, because the pages
of sequential scan are fully deterministic, prefetch page order is
the same as Postgres read page sequence. Thus, the AIO prefetch
is also tightly coupled to the Postgres read call working together
like a producer-consumer would. The AIO structure keeps buffer
page information of prefetched pages with it. When Postgres re-
quests a sequentially scanned page (usually a read call), it does so
to the AIO structure instead and gets it from there (it would have
already been prefetched by then). These requests from Postgres
to the AIO structure is how the AIO structure tracks Postgres

read rate and knows that it can prefetch the next page. We over-
come these two key challenges in our implementation integrating
PyTHIA into Postgres.

Prefetching for an Entire Query. When using PYTHIA to
prefetch pages we want to perform prefetch for all index scanned
(non-sequential) pages of a query instead of just sequential table
scans. We first move the AIO structure to the execution layer
of Postgres which will be active for the entire execution of the
query. It can now track and perform prefetch for the entire query
instead of just a table scan access layer node as before. We also
create a global scan state (Postgres only has scan state for indi-
vidual access layer scan nodes) to assist with bookkeeping for
the AIO structure. The global scan state and the AIO structure
are passed to the lower level access nodes so that all internal
nodes (logical execution layer nodes like join as well as physical
access layer nodes like index scan) have access to them and can
use them to keep track.

Decoupling AIO from Postgres read call. Any page that
PytHIA will prefetch will likely not be the page that Postgres is
going to use right away. So, we modify Postgres to never request
page from the AIO structure but always using the default read
call (would cause buffer hit if the prefetch has already happened).
We still add a dummy request to the AIO structure, which re-
moves a prefetched page from AIO producer queue so that it
can initiate the next prefetch. The page that it returns from this
dummy request is just discarded (not used, but it stays in the
buffer).

Integrating PyTHIA. Finally, we integrate the modified AIO
module with PyTHIA. When query execution is ready to start and
has a query plan ready, a separate module checks whether the
corresponding query belongs to any workload for which PyTHiA
has a model. If not, the global scan state and AIO structure is not
created and query execution proceeds normally as in the absence
of PyTHIA. Otherwise, the query plan is given to PyTH1A predictor
and prefetcher gets a sequence of pages ready to prefetch.

In the current implementation where we predict all possible
pages that the query will read as a set, the sequence information
about any page is unknown. A naive solution would be to pin
every page in the buffer pool until query execution consumes it.
However, this is a sub-optimal solution especially when there are
multiple concurrent queries. Instead, we only keep the “reada-
head window” pages pinned for each query. This parameter is
tunable by the user and based on empirical analysis, we have set
it to 1024. We conduct an experiment (shown in Figure 12g) that
evaluates PyTHIA based on the number of blocks kept pinned
in buffer. We see more benefits as we increase the value but the
growth drops off after 1024.

5 EXPERIMENTS

We conducted extensive experiments to evaluate the efficacy of
PyTHIA. Our experiments confirm that PyTHiA predicts block
access patterns with high accuracy resulting in faster query exe-
cution. We have open sourced our code to reproduce experimental
results [2].

5.1 Experimental Setup

Hardware and Platform. All our experiments were performed
on a NVidia Titan Xp GPU with 12 GB memory. The machine
has 16 GB of RAM and 4 CPU cores with 3.4 GHz clock speed.

389

DSB OLAP Benchmark. We focus on the OLAP benchmarks
where the queries perform high disk I/O. Specifically, we focus
on the Decision Support Benchmark (DSB) [9]. DSB is based on
TPC-DS and uses the same data entity model. It consists of 7 fact
relations and 17 dimension relations for a total of 24 relations.
TPC-DS typically uses uniform distribution to populate data
in different columns and the data has little correlation either
within or across multiple columns. In contrast, DSB allows more
complex data distribution and has extensive support for skewness
and correlations over one or more columns. The generated data
is more realistic and comparable to real-world data distribution
patterns. DSB also improves upon the query workload generation
process by adding new query templates with diverse join patterns.
The query templates having additional filter predicates allowing
for fine grained data selection. Overall, DSB query templates
are more expressive and customizable allowing complex query
workloads.

Dataset. Our experiments were conducted on a DSB dataset gen-
erated using a scale factor of 100 (resulting in a 100 GB database).
We use standard data generation of DSB without any modifica-
tions.

DSB Query Templates. A query template is a parameterized
query with several parameters that can take different possible
values from their domain to generate the final query instance of
the corresponding query template. Overall, DSB has 15 templates
corresponding to SPJ queries that are I/O intensive and could
benefit from block prefetching. Due to space limitations, we
report the results for 3 representative query templates: 18, 19,
and 91. These templates are exemplars of the different access
patterns. All of our experimental results across all templates
are consistent with those presented on the selected templates.
These queries perform a join on one of the 7 fact tables along
with some of the smaller dimension tables. Postgres performs a
sequential scan of the rows of the fact table and for each row that
qualifies, index scan on the smaller dimension tables. Based on
filter predicate selectivity, some dimension tables might be joined
to the fact table with a hash join where they are sequentially
scanned as well instead of being index scanned.

Query Workload. We use DSB’s standard query generator,
which uses uniform sampling for parameters, without any modifi-
cation. We also did not make any changes to the query templates
we use for any of our experiments. We define a workload as
several query instances of a particular query template. For each
of the aforementioned 3 templates, we generate 1000 query in-
stances. Hence, our experiments were conducted over 3 diverse
query workloads. We execute each of the 1000 queries from each
workload on Postgres and generate the trace sequence consist-
ing of access patterns. We randomly sample 5% of the queries
from each workload for testing (as unseen queries) while the
remainder is used for training. Total distinct queries that can be
generated for template 18 of DSB are in billions. A test query can
be potentially any one of those billion and PyTHIA models, once
trained, will work for all them.

IMDB Data Workload. We also show the efficacy of PyTHIA
by conducting experiments on a real world IMDB dataset. IMDB
dataset has been used to assess performance of many database
tasks like join ordering with Join Order Benchmark (JOB) [18] and
cardinality estimation with Cardinality Estimation Benchmark
(CEB) [24]. We use the data as provided with CEB. CEB also
has 3000 query instances of query template 1a which we use

1.50 4

1.25 4

.

104 10 1.04 104 —_—
0.8 0.8 0.8 0.8 :
g 0.6 ‘? 0.6 % 0.64 % 0.64
;204 5(.4 E 4 ’ ;“04’
024 : 0.2 N 0.2 024
0.0 ¥ T 0.0 .\ T 0.0 T 0.0 T T
PYTHIA NN PYTHIA NN PYTHIA NN PYTHIA NN
(a) IMDB - Template 1a (b) Template 18 (c) Template 19 (d) Template 91
Figure 5: F1 scores for PyTHIA and nearest neighbor based idealized baseline.
4.0 104
2.50
. . T
2.25 8
3.04 3.0
a a g
@0 20 & i '
'
L5 15 1.25 ¢ (] 5 + N
10 - ; . 10 . . i 1.00 ¢ ¢ “ ;
PYTHIA ORCL NN PYTHIA ORCL NN PYTHIA ORCL NN PYTHIA ORCL NN
(a) IMDB - Template 1a (b) Template 18 (c) Template 19 (d) Template 91
Figure 6: Speedup achieved by PyTHI1A and two idealized baselines.
1.04 1.0 1.04 1.0
L - — —_
0.84 0.8 T 0.8 [i 0.8 z
° ¢ @ o B
£ 061 R ¢ £ 061 ‘. EE
L: 0.4 : 0.4 3 B 044 ¢ L: 0.4
= .
0.2 0.2 0.2 ¢ 0.2
0.0 T 4 4- 0.0 T T T 0.0 T T 0.0 T T T
Low Sim Med Sim High Sim Low Sim Med Sim High Sim Low Sim Med Sim High Sim Low Sim Med Sim High Sim
(a) IMDB - Template 1a (b) Template 18 (c) Template 19 (d) Template 91
Figure 7: Impact of similarity between test query and query workload: F1 score
] 7 -
2.25 61
o 25 _ 2,00 a
E- 150 é j 20 H 5 ' H
’

) i
1.0

1.00 4

= ¢

= e o e oo

Low Sim Med Sim High Sim

(a) IMDB - Template 1a

Low Sim Med Sim High Sim

(b) Template 18

Low Sim Med Sim High Sim

(c) Template 19

Low Sim Med Sim High Sim

(d) Template 91

Figure 8: Impact of similarity between test query and query workload: Speedup

for our experiment with the IMDB dataset. We only prefetch
the table cast_info for experiment on template 1a as this table
is non-sequentially accessed and large enough to sufficiently
fill and overflow the available buffer memory. Table 1 details
relevant statistics for template 1a. For query instances where
PyTHIA predicts that more pages will be read than the available
buffer memory, we perform limited prefetching to stay within
buffer memory bounds. While this makes PyTHIA lose on some
potential gain, it can still exploit gains offered from prefetching
a limiting set of pages.

PyTHIA Model. We used PyTorch for building the DL models.
The serialized query tokens are first appended with sequence
information to be used by a transformer. They are each then
embedded onto a 100 dimension feature vector through an em-
bedding layer. This embedded serialized query is then passed

through 2 layers of transformer encoder network with 10 atten-
tion heads to generate a query embedding of 100 dimensions.
The query embedding is then processed by a feedforward de-
coder network with one hidden layer of size 800 and a final layer
producing an output vector. The dimensionality of the output
vector corresponds to the number of data blocks associated with
the database object (such as index or base table). PyTHIA is a
multilabel model wherein each of the dimension of the output
vector can take a value of 0 or 1. We iterate over the output vector
and select the subset that take a value of 1. The corresponding
offsets are fed to prefetcher.

The simplicity of PyTHIA results in both fast training and
inference. It takes around 10 minutes to train all models for a
query template. Recall that we train independent models for
predicting block accesses of index and base tables. For each query,

390

Table 1: Statistics for template workloads used in the experiments.

IMDB Template 1a Template 18 Template 19

Template 91

Sequential IO
min(distinct non-sequential IO)

max(distinct non-sequential I0)

Distinct query plans in workload

4 3714380 5165552 432737
5298 3008 10074 3054
(cast_info only) (0.08%) (0.19%) (0.07%)
223251 82840 82090 94778
(cast_info only) (2.23%) (1.58%) (21.9%)
41 21 8 2
9(6) 6(4) 6(4) 7(5)

Number of relations joined (max index scanned)

inference over all models takes approximately 1-1.5 seconds. In
other words, we have the set of blocks to prefetch for each of the
index/base tables involved in the DSB query in approximately
1-1.5 seconds. This points to the practical utility of our proposal.
Currently, we assume that data is static and does not change.
Extending PYTHIA to support data updates is a key focus of our
future work. Given that training from scratch is not very costly,
we can periodically re-train the models with updated training
data.

Total size of all models trained for template 18 is around 800
MB (200 MB for the largest table it scans non-sequentially and
40 MB for the smallest with an average of approximately 80
MB). The peak GPU usage during training is approximately 2 GB.
Model size for tables with more pages are higher than smaller
ones. With respect to the entire database, the model size is 1%
of the total data size. We use a size 100 size query embedding
for all our models (which might be overkill for some smaller
tables and index models) to avoid splitting any relation models.
(for higher accuracy as mentioned in Section 3.3). This makes
current PYTHIA models larger than they need to be. However,
our current focus was higher prediction accuracy and smaller
inference time. Identifying more ways to further reduce model
sizes and continuing to keep high prediction accuracy is a key
area for future research.

Performance Metrics. We use two metrics to evaluate the per-
formance of PyTHIA. We measure the prediction accuracy using
F1-score and performance improvement using a speedup ratio.
We measure the F1-score for a query as follows. Given a query g
we collect the set of block accesses belonging to all the indexes
and base tables involved in the query. Next, we serialize the query
and feed it to all the applicable PyTH1A models and collect their
output. We now have two sets corresponding to ground truth and
prediction of PYTHIA respectively. We can measure precision and
recall metrics from these two sets and thereby compute F1-score.

Given a query, we measure the time it took for executing the
query using the default prefetching strategy of Postgres and the
time it took using the predictive model belonging to PyTHIA
or one of its baselines. We use the asynchronous prefetcher to
prefetch the blocks predicted by PyTHIA and the baselines. We
measure the speedup ratio by dividing the time taken for the for-
mer by the latter. Speedup for PyTHIA also accounts for the time
it takes to serialize and encode any query as well as determining
which workload the query belongs to. Postgres is restarted be-
tween every different query execution along with cleaning OS
page cache before each different execution. These two actions,
ensure a cold cache behavior such that each new query execution
does not benefit from previous cache or buffer entries.

391

5.2 Comparison with Baselines

In our first set of experiments, we compare the performance of
PyTHIA against multiple baselines.

Predicting block access patterns using Transformers. The
transformer model seeks to predict the next block access given
the past K block accesses. Transformers are not well equipped
for handling long sequences (which can run in millions for our
case), Hence, we used the Longformer [3] from HuggingFace
library [34] that can handle sequences as long as 24K tokens.
We trained two variants of transformers. The first, takes the raw
sequence (which could include duplicate blocks) while the second
takes a deduplicated set. Training and inference of transformers
for long sequences take significant amount of time. Hence, we
trained the model for template 91 which has the smallest traces of
all templates because of a small fact table being used. The training
for 15 epochs took 3.8 hours using 4 V100 GPUs. Inference takes
around 16.4 minutes for predicting 1M block accesses on a single
V100 GPU. In contrast, queries from DSB (such as template 91)
finish in 15 minutes (expected runtime 11 minutes) even on a
database of scale factor 100. Hence, even if transformers are good
at predicting page accesses with sequence information intact,
they are still impractical to be used for prefetching.

Figure 9 shows that PyTHIA and transformer based approaches
have a similar prediction accuracy (PyTHIA slightly edges ahead
on median F1 score). However, transformers require substantially
more time for training and inference (23x for training and 8500x
for inference as that of PYTHIA, with much better GPUs). For each
of the two variants mentioned above, two versions of transformer
models are trained from scratch each supporting context window
of size 32 and 64 respectively.

SALL

PYTHIA SEQ-32 SET-32 SEQ-64 SET-64

1.0 4

0.8 1

0.6

F1 score

0.4

0.2 1

0.0

Figure 9: PyTHIA vs Transformer based predictors

Idealized Baselines. Given the lack of prior work on predicting
block accesses, we compare PYTHIA against two idealized and
challenging baselines. We denote the default variant that uses
the prefetcher of the plain vanilla Postgres as DFLT. ORCL is the
idealized oracle variant that knows the exact sequence of block

accesses and then prefetches them using PyTHIA’S prefetcher.
NN is an idealized non-learning based approach. For each test
query g, we first retrieve the most similar query NN(q) (i.e.
nearest neighbor) in the training set. We measure similarity using
Jaccard similarity between the blocks accessed by the test and
the corresponding query. Once the nearest neighbor is obtained,
we retrieve the blocks accessed by NN (g) and use the prefetcher
of PyTHIA. NN is an idealized baseline as it requires the output
of the test query g and the storage of block accesses of all queries
in the training set.

Figure 5 presents how PyTHIA fares against the NN baseline.
We did not include ORCL as, by definition, it achieves a perfect
F1-score. NN baseline can intelligently prefetch blocks based
on the most similar query in the training dataset. This provides
a strong bound on the performance of any ML based method.
PyTHIA achieves accuracy that is comparable to this idealized
baseline. Figure 6 shows the speedup achieved by PyTHIA against
two strong baselines ORCL and NN. Regardless, PYTHIA achieves
speedups comparable to ORCL and NN. Template 91 achieves sig-
nificant speedup as the fraction of IO that benefits from prefetch-
ing is very high as compared to other templates (see Table 1).
This experiment allows us to measure the speedup achieved that
can be attributed to the accuracy of the algorithms.

5.3 Factors Impacting PyTH1A’s Performance

Similarity between test query and query workload. Given
a test query and an arbitrary query from the training workload,
we measure their similarity using Jaccard similarity between
their corresponding block accesses. Next, we repeat this process
for a given test query and each query in the training set and
compute the average similarity between test query and the entire
workload. We repeat this process for each query in the test set.
Now, we have a scalar similarity value for each test query in
the test set. We bucketize the test queries into 3 sets. The first
consists of the test queries in the bottom 25% of similarity scores.
The last consists of test queries in the top 25% of similarity scores
and the second consists of the remainder. The use of quantiles
allows us to compare the performance of PyTHIA across different
templates.

Figure 7 presents how the F1-score of PyTHIA is impacted
when the similarity of a test query to the workload varies. The
accuracy of PYTHIA improves dramatically when the test query
is similar to that of the workload. The relatively high accuracy of
predictions also has a material impact on the speedup achieved
by PyrHIA. Figure 8 illustrates that PyTHIA achieves significantly
better speedup when the test query is more similar to that of the
training set.

Proportion of Non-Sequential Reads. We bucketize all test
queries into 3 different buckets corresponding to low, medium
and high total number of distinct non-sequential reads the test
query performs during execution. The bottom 25% percentile
of queries with the least non-sequential reads fall into the low
bucket while the corresponding 25% with most reads fall into the
high bucket. The remainder fall into the medium bucket. Figure 10
shows that while PyTHIA achieves high F1-scores in general, it
achieves the best results when the query has high number of
distinct non-sequential reads. This is not surprising as accurately
predicting access patterns for queries involving low selectivity
and/or low non-sequential reads is much harder. Figure 11 shows
the impact on the speedup achieved by PyTHiA. Hence, it is not
surprising that the performance of PyTH1A is higher whenever

392

the query performs more non-sequential reads. When a query
contains a smaller proportion of non-sequential reads, then the
amount of prefetching that can be done by PyTHIA is limited. The
buckets corresponding to the number of non-sequential reads
coincide with that of the test query similarity for IMDB template
1la and thus produce same graph. The low speedup seen for the
high non-sequential reads bucket is primarily because of limited
prefetching as most of these queries read more non-sequential
pages than the amount of buffer memory present.

Size of Database. We generate three different datasets with scale
factors 25, 50 and 100 resulting in databases of size 25 GB, 50
GB and 100 GB respectively. The only change in the predictive
model is in the last layer where the size depends on the number
of distinct blocks. Figure 12a shows the result of this experiment.
We can see that model accuracy slightly deteriorates when the
scale factor increases. This is not surprising as the database for
SF=100 has substantially larger number of blocks to predict as
compared to SF=25 database. Furthermore, since the number of
queries in the training set is fixed, this results in a proportional
drop in performance.

Impact of training data size. By default, we use approximately
950 queries to train PyTHIA models. In this experiment, we ran-
domly choose 10%, 25%, 50%, 75% queries from the training set
and use it to train PyTHIA. Figure 12b shows that the accuracy of
PyTHIA increases when the size of training set increases. The mar-
ginal improvement in F1-score steadily decreases as the training
dataset increases. This result also indicates that PyTHIA models
can be trained incrementally. PYTHIA can be trained with as much
training data as available at first. Every new query run can be
used as a new training data point to improve PyTHIA models.

Impact of Workload Type. We assume a workload consists
of queries from a single template. We can call such a workload
homogeneous. PYTHIA currently trains and maintains models
for only homogeneous workloads. We create a heterogeneous
workload from template 18 and template 19 (4 relations accessed
in common). The amount of training data used in both cases is
same. We show in Figure 12c that prediction accuracy drops for
PyTHIA models trained on heterogeneous workloads. Inference
times are reduced by a factor of the shared relations but given
that it’s already as low as 1-1.5 seconds, it doesn’t provide that
much help.

Separate Models for Index and Base Table. We list down some
rationale for our design in Section 3.3. We also show in Figure
12d that when PyTHIA trains combined model for index and base
table, the prediction accuracy drops. Having a combined model
for both saves storage space. (combined models size is 75% of the
single models size). No change was observed on training time
and inference time. Currently, prediction accuracy was given
more importance than model storage space (hence the design
choice, among others) but this decision can be revisited in the
future.

Buffer Replacement Strategy. Postgres only uses Clock buffer
replacement policy. To evaluate how PyTHIA performs with other
policies we added an implementation of Least Recently Used
(LRU) and Most Recently Used (MRU) buffer replacement policies
in Postgres. Figure 12e shows that PyTHIA provides benefits re-
gardless of the buffer replacement policy being used. LRU edges
slightly ahead of Clock which is expected since LRU keeps pages
in the buffer longer once prefetched and Clock is an approxima-
tion of LRU. MRU performs the worst, as it might swap out a

F1 score
> » o

=

> ®» o

F1 score

=

%%

0.44
02 é 0.2
4- 4 0.0

Low High Ln»\ Hngh

Med
Non-Sequential 10 Non- s‘ qm mnl 10

(a) IMDB - Template 1a (b) Template 18

Low High Low High

Med Med
Non-Sequential 10 Non-Sequential 10

(c) Template 19 (d) Template 91

Figure 10: Impact of the number of non-sequential reads on PyTHia (F1 score).

o

Speedup
9

Speedup

@-}

2% 3.0
100 .

@
1.50

P

250

2.25 4

2,004 i
3

Speedup

- e e e o

' =
T Rl b

1.00 4

Low High Low High

Non-Se q\lum al 10 Non- Sulm il

(a) IMDB - Template 1a (b) Template 18

Med High

Non-Sequential 10

High Low

Med
Non-Sequential 10

(c) Template 19 (d) Template 91

Figure 11: Impact of the number of non-sequential reads on PyTHI1A (Speedup).

page before PYTHIA gets its benefits. The pinned buffers PyTHia
maintains help MRU perform well but also make it costlier to find
the most recently used page for replacement. We use a buffer size
of 512 MB for this experiment (instead of 1024 MB) to increase
the times the buffer replacement policy kicks in. The difference
of performance between the policies can be expected to widen
with smaller buffer sizes and reduce when it increases.

Buffer Size. By default, we use a buffer size of 1024 MB for all
our experiments. We choose this value as 1% of the total data
size, after inspecting actual buffer sizes used in some real world
data warehouses. In Figure 12f, we show the benefits of PyTHIA
with changing buffer sizes. For smaller buffer sizes, the predicted
pages for a query are more than the total pages that can reside in
the buffer, in this case PyTHIA only prefetches a smaller subset of
the predicted pages to not overload the buffer. PyTH1A offers more
benefit with larger buffer size as it has more space to prefetch all
pages that it predicts.

Size of Readahead Window. Given a readahead window of R,
PyTHIA seeks to ensure that the next R blocks from the prefetch

frequent pages does not provide more benefit than the fraction
of this set to that of the full prediction. This is due to the fact that
these popular pages often stays in the bufferpool even if prefetch-
ing is not done. Hence, the bulk of the speedup of PYTHIA comes
from smart prefetching of pages from non-sequential reads that
are not frequent.

5.4 PyrtHIA With Multiple Queries

So far, we have analyzed the performance of PyTHIA for a single
query under a cold cache setting. In this section, we show the
benefits of PYTHIA when multiple queries are run and we don’t
explicitly clear the cache between each of them. With multiple
queries, PYTHIA optimizes each query individually, prefetching
all pages it predicts for each query. There are several factors that
affect PyTHIA performance with multiple queries such as which
template a query belongs to, their arrival times and finally the
query history.

We select a few queries to run (uniformly sampled) and run
them under two settings, one with default strategy of postgres (no

queue are prefetched and pinned into the buffer. Unpinned prefetched prefetch) and one with prediction and prefetching using PyTHIA.

blocks can get swapped out from the buffer even before they were
actually used by the query, effectively rendering that prefetch
useless. We expect smaller window to perform worse as it will
keep less blocks pinned into the buffer as shown in Figure 12g.
We observe that the performance of PyTHIA does not degrade too
much with smaller values of R. This is not only due to the fact
that PyTHIA is able to prefetch relevant blocks before Postgres
needs it but also because the buffer manager is able to retain
significant unpinned prefetched blocks into the buffer.

Impact of Predicting top-k Pages. By default, the multi-label
classifier seeks to predict all pages from a relation. However, it
is possible to substantially simplify the model by only predicting
the most frequently accessed pages. Figure 12h demonstrates the
benefit of this optimization. We train three ML models so that

they predict the most frequent 20k, 40k and 60k pages respec-

tively. We can see that retrieving a small set of only the most

393

We calculate the speedup of all queries run instead of individually.

No Overlap. We start by assessing performance of PyTHI1A when
the queries do not overlap at all. The only factor that affects
the runtime of queries is query history and query template. We
uniformly sample 4 queries from all 3 templates of DSB and run
them sequentially. This is repeated multiple times with different
queries. We compare speedup from PyTHIA to an ORCL prefetcher
for each individual run. Figure 13a shows that PYTHIA generates
good performance benefits for the queries and is also close to
that of the oracle prefetcher (which is the best any prefetcher
can do). The benefits are reduced as compared to earlier since
all correct prefetches might not necessarily help anymore, some
of them already exist in the buffer since they were used by a
previous query.

Concurrent Queries from Single Template. We then assess
PytHIA performance when queries start to overlap (running

concurrently). To study the benefits of PyTHIA we first limit the
queries to be from a single template and assuming that they all
arrive at the same time. Any speedup in this setting thus cannot
be attributed to query type or their arrival times. We conduct 4
different experiments each time increasing the number of queries
running concurrently. Figure 13b shows that PyTHIA provides
performance boosts when running queries concurrently. The
gains are higher with more queries running together since pages
prefetched by one query might also help other running queries
(queries from same template). The benefits plateau eventually
with increasing number of queries as the resource contention
also starts increasing.

Concurrent Queries from Multiple Templates. We evaluate
if PyTHIA provides the same benefits when concurrently running
queries are sampled from a single or multiple templates. We run
a similar experiment as the previous one but the queries are now
sampled from all 3 DSB templates instead of just a single one.
Figure 13c shows that PyTHia still offers performance boosts
when running queries from multiple templates concurrently. The
gains are reduced with increasing number of queries (contrary to
previous) since when queries belong to different template (with
different page access patterns) they start hindering each other
instead of helping out. This drop valleys out with more queries
as the chances of queries being from the same template (and help
each other) increases.

Concurrent Queries with Different Overlap. So far, we as-
sumed that all queries arrive at the same time. But this is im-
practical and so we conduct yet another experiment to assess
how PyTHIA affects performance when queries have different
arrival times. We select 5 queries from a single template so that
we can gauge the effect of just arrival times. We run 4 different
experiments such that for any 2 consecutive queries the expected
overlap ranges from 25% to 100% (same arrival time). We sample
the individual query arrival time using a Poisson distribution such
that the expected inter arrival time would result in an expected
overlap as wanted (with known expected runtime for queries
from the selected template). Figure 13d shows that PYTHIA pro-
vides performance benefits with concurrently running queries
arrive at different times as well.

5.5 Discussion

From our experiments, it is evident that PyTHIA works well re-
gardless of individual factors like benchmark, database size, buffer
size and replacement policy etc. The impact could be smaller
and can be increased with complex models and more training.
PyTHIA also provides benefits with multiple queries running
concurrently.

PYTHIA isn’t omniscient about the pages it predicts. It might
seem that the lack of sequence information could potentially
restrict the speedup. However, the benefits from a correctly pre-
dicted page heavily outweigh the regression caused by an incor-
rect one. An incorrectly predicted page does not affect perfor-
mance unless it evicts a page required from the buffer. This comes
into play when considering concurrent query execution scenario
when the buffer is highly contested. However, with concurrent
query execution, a wrong page for one query might be correct
for another and thus reduces the performance harm. Secondly,
PyTHIA models are pessimistic. It doesn’t predict a page unless
its more confident about the page being accessed by the query
as shown by queries performing less non-sequential reads have
a lower F1 score (Figure 10).

394

Overhead of using PYTHIA is small. Training all models from
scratch takes around 10 minutes for a given template of DSB
on a database of scale factor 100 (100 GB). During inference,
predictions can be generated within 1.5 seconds for a query,
which is less than 0.5% of the query (expected) runtime. This also
includes other overhead time of serializing the plan, encoding the
plan etc. When prefetching of pages is initiated, they all happen
asynchronously and so query can progress while prefetch is
underway. So, even if PYTHIA does not predict any page correctly,
we can expect the regression to be within the margin of error
(practically no regression).

6 RELATED WORK

ML for Buffer Management. An overview of ML based ap-
proaches for various tasks in query optimization can be found
in [19, 20, 32]. To the best of our knowledge, there exist a single
work [8] that applies DL for prefetching in buffer manager. It eval-
uates various NLP based methods RNN, LSTM and then proposes
an ensemble based approach. The discussion in [8] is however
limited to only evaluating the prediction accuracy rather than
actually prefetching blocks. We focus on non-sequential reads
that are much challenging to predict. NLP based methods require
larger training and impractical inference time while achieving a
similar prediction accuracy as PyTHIA. There has been limited
work on using ML for database buffer replacement. [36] pro-
poses a workload classifier based on access patterns and proposes
different buffer management strategies for each pattern. DRL-
Clusters [21] proposes a reinforcement based buffer replacement
algorithm that can work well for changing workload patterns.
Systems such as PyTHiIA that enable sophisticated prefetching
can be used to improve the performance of query scheduling
algorithms such as [28, 37].

Learned Prefetching. Leaper [35] proposed a learning based
prefetcher that is used for cache invalidation in LSM based stor-
age systems. Voyager [30] proposed an LSTM based approach
that exploits the hierarchical structure by decomposing a mem-
ory address into pages and offsets. A more recent work [38]
uses transformers to achieve better results. Approaches based
on deep reinforcement learning such as [4] combine NLP tech-
niques and feedback from the system to improve prefetching.
There has also been extensive work for prefetching in the storage
setting. These methods often rely on NLP based approaches such
as LSTM [6, 14]. An overview of recent approaches can be found
in [1].

7 CONCLUSION

In this paper we proposed PYTHIA, a neural ML predictive model
that can accurately predict non-sequential page accesses of com-
plex SQL queries. We showed that the output of PyTHIA can be
used to prefetch these pages resulting in significant improvement
in performance. It would be fruitful to investigate the contribu-
tion PYTHIA may have in improving the performance of query
scheduling algorithms where the goal is to schedule queries to
maximize the overlapping reads. This can also enable sophisti-
cated goal oriented query scheduling approaches. Next, designing
effective algorithms to improve the coordination between the
prefetcher of PyTHiA and the buffer manager of Postgres (i.e.
both prefetching and buffer replacement policy) has the poten-
tial to achieve improved performance. Finally, our experimental

104 10 1.04 _l_ 104

0.8 0.8 0.8 0.8
B P g g
S 0.6 06 £ 064 5 0.6
= 4] ¢ $ Eoa E 0a] = 4]

024 ‘ 0.2 029 024

4 ¢ ‘ ¢ "
0.0 $ - 4 0.0 - - - - 4 0.0 + - 0.0 ¢ +
SF-25 SF-50 SF-100 10% 25% 50% 5% 100% H Workload Heterogeneous Workload Separate Models Combined Models
(a) Database Scale Factor (b) Training Data Size (c) Workload Type (d) Index and Base Table Models
_ 2.50 ¢
2259 3.54
225 25+
2.004
L2 2.00
= s
Z 1754 E}
g g 175 ¢
& 150] &
1.50 4
1001 T T T 100 T T T T T T T T T 104 T T T
Clock LRU MRU 128MB 256MB 512MB 1024MB 1 2 32 1024 2048 PYTHIA-20k PYTHIA-40k PYTHIA-60k

(e) Buffer Replacement Strategy (f) Buffer Size (g) Readahead Size Window (h) Predicting Top-k Frequent

(a) No Overlap Many Templates

Pages

Figure 12: Impact of Miscellaneous factors on PyTHiA for Template 18

Speedup

1L

p——

PYTHIA ORCL 2 queries 3 queries 4 queries 5 queries

(b) Same Arrival Template 18

’
4.04
¢ ’
E Q i i “ % %
2 queries 3 queries 4 queries 5 queries 7 50% 5% 100%

(c) Same Arrival Many Templates (d) Expected Overlap Template 18

Figure 13: Speedup with Multiple Queries.

results to date concluded that transformer based methods are —
currently — not viable for predicting database block accesses.

REFERENCES

[1] Ibrahim Umit Akgun, Ali Selman Aydin, Aadil Shaikh, Lukas Velikov, and

[7

8

[

=

=

Erez Zadok. 2021. A machine learning framework to improve storage system
performance. In Proceedings of the 13th ACM Workshop on Hot Topics in Storage
and File Systems. 94-102.

Akshay Arun Bapat. 2024. Pythia: A Neural Model for Data Prefetching. https:
//github.com/bapataks/pythia

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The
long-document transformer. arXiv preprint arXiv:2004.05150 (2020).

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreeni-
vas Subramoney, and Onur Mutlu. 2021. Pythia: A customizable hardware
prefetching framework using online reinforcement learning. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture. 1121—
1137.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie
Bradley, Kyle O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu
Purohit, USVSN Sai Prashanth, Edward Raff, et al. 2023. Pythia: A suite for
analyzing large language models across training and scaling. In International
Conference on Machine Learning. PMLR, 2397-2430.

Chandranil Chakraborttii and Heiner Litz. 2021. Learning I/O Access Patterns
to Improve Prefetching in SSDs. In Machine Learning and Knowledge Discovery
in Databases: Applied Data Science Track, Yuxiao Dong, Dunja Mladeni¢, and
Craig Saunders (Eds.). Springer International Publishing, Cham, 427-443.
Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh,
Pierre Richemond, James McClelland, and Felix Hill. 2022. Data distributional
properties drive emergent in-context learning in transformers. Advances in
Neural Information Processing Systems 35 (2022), 18878-18891.

Yu Chen, Yong Zhang, Jiacheng Wu, Jin Wang, and Chunxiao Xing. 2021.
Revisiting Data Prefetching for Database Systems with Machine Learning
Techniques. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE). IEEE, 2165-2170.

Bailu Ding, Surajit Chaudhuri, Johannes Gehrke, and Vivek Narasayya. 2021.
DSB: A decision support benchmark for workload-driven and traditional
database systems. Proceedings of the VLDB Endowment 14, 13 (2021), 3376~
3388.

[10] Yanai Elazar, Nora Kassner, Shauli Ravfogel, Amir Feder, Abhilasha Ravichan-

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

395

der, Marius Mosbach, Yonatan Belinkov, Hinrich Schiitze, and Yoav Gold-
berg. 2022. Measuring Causal Effects of Data Statistics on Language
Model’sFactual’Predictions. arXiv preprint arXiv:2207.14251 (2022).

Andres Freund. 2020. PGCON: Asynchronous IO for PostgreSQL. https://av.tib.
eu/media/52123

Andres Freund. 2021. Asynchronous and direct IO support for Post-
greSQL. https://www.postgresql.org/message-id/20210223100344.
llw5an2aklengrmn%40alap3.anarazel.de

Andres Freund. 2022. Asynchronous I/O for PostgreSQL. https://github.com/
anarazel/postgres/tree/aio

Gaddisa Olani Ganfure, Chun-Feng Wu, Yuan-Hao Chang, and Wei-Kuan Shih.
2020. Deepprefetcher: A deep learning framework for data prefetching in flash
storage devices. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 39, 11 (2020), 3311-3322.

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory.
Neural computation 9, 8 (1997), 1735-1780.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raf-
fel. 2023. Large language models struggle to learn long-tail knowledge. In
International Conference on Machine Learning. PMLR, 15696-15707.

Tim Kraska. 2021. Towards instance-optimized data systems. Proceedings of
the VLDB Endowment 14, 12 (2021).

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really?
Proc. VLDB Endow. 9, 3 (nov 2015), 204-215. https://doi.org/10.14778/2850583.
2850594

Guoliang Li and Xuanhe Zhou. 2022. Machine learning for data management:
A system view. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 3198-3201.

Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. Al meets database: AI4DB and
DB4AL In Proceedings of the 2021 International Conference on Management of
Data. 2859-2866.

Kai Li, Qi Zhang, Lei Yu, and Hong Min. 2021. DRL-Clusters: Buffer Manage-
ment with Clustering based Deep Reinforcement Learning. In Workshop on
Databases and AL

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and
Hannaneh Hajishirzi. 2023. When Not to Trust Language Models: Investigating
Effectiveness of Parametric and Non-Parametric Memories. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics, Toronto,

[23]

[24

[25]

[26

[27]

[28

[29

[30]

Canada, 9802-9822. https://aclanthology.org/2023.acl-long.546

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad
Alizadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization
Practical. In Proceedings of the 2021 International Conference on Management
of Data (Virtual Event, China) (SIGMOD ’21). Association for Computing
Machinery, New York, NY, USA, 1275-1288. https://doi.org/10.1145/3448016.
3452838

Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality
Estimates That Matter. Proc. VLDB Endow. 14, 11 (jul 2021), 2019-2032. https:
//doi.org/10.14778/3476249.3476259

A Emin Orhan. 2023. Recognition, recall, and retention of few-shot memories
in large language models. arXiv preprint arXiv:2303.17557 (2023).

Debjyoti Paul, Jie Cao, Feifei Li, and Vivek Srikumar. 2021. Database work-
load characterization with query plan encoders. Proceedings of the VLDB
Endowment 15, 4 (2021), 923-935.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. 2022.
Impact of pretraining term frequencies on few-shot reasoning. arXiv preprint
arXiv:2202.07206 (2022).

Ibrahim Sabek, Tenzin Samten Ukyab, and Tim Kraska. 2022. Lsched: A
workload-aware learned query scheduler for analytical database systems.
In Proceedings of the 2022 International Conference on Management of Data.
1228-1242.

Hanyin Shao, Jie Huang, Shen Zheng, and Kevin Chen-Chuan Chang. 2023.
Quantifying Association Capabilities of Large Language Models and Its Impli-
cations on Privacy Leakage. arXiv preprint arXiv:2305.12707 (2023).

Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ran-
ganathan, and Calvin Lin. 2021. A hierarchical neural model of data prefetch-
ing. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 861-873.

396

(31]

[32]

[33]

[34]

[35]

[36

[37]

(38]

[39]

Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim,
Boseop Kim, Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha,
et al. 2022. On the effect of pretraining corpora on in-context learning by a
large-scale language model. arXiv preprint arXiv:2204.13509 (2022).

Dimitris Tsesmelis and Alkis Simitsis. 2022. Database Optimizers in the Era
of Learning. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 3213-3216.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).
Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-the-art natural language
processing. arXiv preprint arXiv:1910.03771 (2019).

Lei Yang, Hong Wu, Tieying Zhang, Xuntao Cheng, Feifei Li, Lei Zou, Yujie
Wang, Rongyao Chen, Jianying Wang, and Gui Huang. 2020. Leaper: A
learned prefetcher for cache invalidation in LSM-tree based storage engines.
Proceedings of the VLDB Endowment 13, 12 (2020), 1976-1989.

Yigui Yuan, Zhaole Chu, Peiquan Jin, and Shouhong Wan. 2022. Access-
Pattern-Aware Personalized Buffer Management for Database Systems. SEKE
(2022).

Chi Zhang, Ryan Marcus, Anat Kleiman, and Olga Papaemmanouil. 2020.
Buffer Pool Aware Query Scheduling via Deep Reinforcement Learning.
(2020).

Pengmiao Zhang, Ajitesh Srivastava, Anant V Nori, Rajgopal Kannan, and
Viktor K Prasanna. 2022. Transformap: Transformer for memory access
prediction. arXiv preprint arXiv:2205.14778 (2022).

Xinjing Zhou, Joy Arulraj, Andrew Pavlo, and David Cohen. 2021. Spitfire: A
three-tier buffer manager for volatile and non-volatile memory. In Proceedings
of the 2021 International Conference on Management of Data. 2195-2207.

