
PROLIT: Supporting the Transparency of Data Preparation
Pipelines through Narratives over Data Provenance

Pasquale Leonardo Lazzaro
Università Roma Tre

Italy
pasqualeleonardo.lazzaro@uniroma3.it

Marialaura Lazzaro
Università Roma Tre

Italy
mar.lazzaro1@stud.uniroma3.it

Paolo Missier
University of Birmingham

United Kingdom
p.missier@bham.ac.uk

Riccardo Torlone
Università Roma Tre

Italy
riccardo.torlone@uniroma3.it

ABSTRACT
Establishing trust in the models is a long-standing objective in
Machine Learning and AI. Information on how data are manip-
ulated before being used for training is instrumental in such
understanding, and data provenance can be used to organize and
navigate such information. The PROLIT system described in this
demo paper is designed to collect, manage, and query the prove-
nance of data as it flows through data preparation pipelines in
support of data science analytics and machine learning modeling.

PROLIT extends our prior work on transparently collecting
data provenance in several directions. Most notably, it employs
a LLM to: (i) automatically rewrite user-defined pipelines in a
format suitable for this activity, (ii) segment the code to pre-
cisely associate provenance to each code snippet, and (iii) pro-
vide human-readable descriptions of each snippet that in turn
can be used to generate provenance narratives. The demo will
showcase these capabilities and offer the opportunity to interact
with PROLIT on user-defined as well as pre-defined Python code
where dataframes are used as the common data abstraction.

1 INTRODUCTION
The provenance of tabular data that flows through a data science
pipeline in preparation for use by machine learning algorithms
reflects transformations that alter both their schema and values.
In this process, every operation performed on the data can have
a significant impact on the final results. Thus, understanding
the history of each piece of data provides transparency, repro-
ducibility, and control over the quality of both the data used for
training and, consequently, also over the final outcome of the
ML algorithm trained on those data. For example, provenance
helps identify the root cause for errors that manifest themselves
at some later stage in the processing.

The PROLIT system collects and stores the provenance of data
preparation pipelines efficiently and offers users natural language
interaction with the provenance storage, both when submitting
a question and by returning short provenance narratives that
incorporate a description of the operations performed on the
data. Our approach relies on the PROV provenance model [5] to
record the relationships between data and operations, but it also
uniquely extends PROV to capture provenance at different levels
of granularity within the table. Data transformations are tracked
through any operation available in standard data manipulation

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

libraries (e.g., Pandas and Scikit-learn), preserving the paths to
data elements at multiple granularities, namely atomic value, row,
column, and whole table. This multi-granular view of the data
flows provides a balance between flexibility, efficiency, and detail
in provenance analysis.

This work follows a long tradition of systems for collecting
provenance from scripts and workflows, which has been sum-
marized in multiple surveys over the years, e.g. [4, 7] and with
notable examples both old [3] and newer [6, 8]. PROLIT fol-
lows from its predecessor, DPDS [1, 2], adding multi-granularity
support but also integrating large language models (LLMs) to
analyze the operations performed on the data and to create a
detailed and structured representation of their transformations.
This analysis produces a “provenance path” for each data item,
which records exactly how and when each value was modified,
generated, or deleted. The LLM analyzes the flow of operations
and, through the automatic identification of data manipulation
patterns, builds a graph that represents the process of creation
and modification of each piece of data.

Following PROV, the graphs include Entity and Activity nodes,
representing data values and operations respectively, but also
new node types to represent table rows and columns. Correspond-
ingly, graph edges represent produce/consume relationships be-
tween data and operations, but also structural inclusions for table
elements. Users can customize the granularity of provenance rep-
resentation, allowing them to focus analysis at their preferred
level of abstraction while optimizing the volume of stored data.

In the rest of the paper, we briefly present the main features
of PROLIT and its logical architecture. We then illustrate an
outline of our demo proposal and sketch some conclusions.

2 PROLIT OVERVIEW
2.1 Provenance Model
In this work, we focus on data provenance for pipelines that
perform typical data manipulation operations on tabular data
with a schema, embodied for example by the ubiquitous Python
Pandas dataframes. A dataframe is a set of records, each with
atomic values for a collection of attributes (or columns). A pipeline
is a sequence of data manipulation operations on a dataframe that
transform, delete, or create values and are designed to reshape
the dataframe for downstream uses, typically as training sets or
for further analysis.

In this framework, we build on the PROV model [5] to graph-
ically represent provenance information, as shown in Figure 1.
The core model describes the effect of data manipulations as a
graph consisting of entity and activity nodes and their typed

Demonstration Paper

 

 

Series ISSN: 2367-2005 1138 10.48786/edbt.2025.108

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.108


relationships. The entity nodes represent individual values in the
records, while the activity nodes indicate operations on the data.
Pre-defined types relationships are used to capture data consump-
tion (used), creation (GeneratedBy), and removal (InvalidatedBy),
as well as the derivation (DerivedFrom) of an entity (column)
from another entity (column) in the case of a data transformation.

We extend PROV to also include Column nodes, allowing
provenance representation at a coarser granularity. Correspond-
ingly, we introduce the belongsTo relationship that associates
dataframe cells to a Column. We also introduce explicit sequenc-
ing between activities using the new next relationship.

This approach provides a complete representation of data
provenance, independently of the type of operators in the pipeline
and the specific library used to implement them.

Figure 1: The data provenance model

2.2 Data provenance granularity
In building our system, we start from the observation that a pri-
mary limitation of data provenance systems, especially those that
track individual elements of a dataset, is the excessive volume
of provenance data, which complicates the readability and in-
terpretability of the provenance graph. PROLIT addresses this
problem by enabling customization of the level of granularity to
which the provenance is collected and queried. Provenance can
thus be captured and observed at the desired level of detail, as
described next.

• The Sketch Level provides a high-level view of the prove-
nance, showing activities and a single entity node for each
relationship; useful for a quick overview of how a pipeline
operates on data.

• Derivation Level incrementally adds, at the sketch level,
DerivedFrom links between entities, allowing a selective
exploration of dependencies by expanding specific nodes.

• Full Level offers the most detailed view of the provenance,
including all entities, activities, and relationships between
them.

• Columns Level captures transformations at the schema
level, showing only activity nodes, column nodes, and
relationships between them, thus disregarding the effect
of the operations on individual data items.

Recording provenance at the full level results in a complex and
potentially overwhelming representation of the data history and
lineage. In contrast, less detailed levels offer more readable rep-
resentations that let users focus on essential details, simplifying
analysis or understanding.

2.3 The role of LLMs in PROLIT
PROLIT leverages Large Language Models (LLMs) in several
tasks of the overall process of data provenance collection and
management, as described next.

Figure 2: PROLIT architecture

(1) Firstly, a LLM is used to transform the input pipeline into
a standardized structure, segmenting the pipeline into dis-
tinct activities and adding detailed, inline comments that
describe each data manipulation operation within the code.
This activity facilitates the identification of the operations
and the collection of the provenance they produce. It also
provides a clear and explicit explanation of each pipeline
activity.

(2) Secondly, the LLM identifies columns used in each activity,
a task often challenging to achieve bymerely analyzing the
pipeline code, and automatically generates and stores, in
a dictionary, high-level descriptions of each operation, ex-
plaining its intent and impact. This task ensures the avail-
ability of comprehensive documentation that accurately
reflects the operations performed, significantly enhancing
the reproducibility and transparency of the pipeline.

(3) Finally, the LLM is also used to provide a high-level inter-
action with the system based on natural language ques-
tions and answers. This follows the Retrieval-Augmented
Generation (RAG) approach by translating user-defined
questions into queries over the data provenance collected
during pipeline execution and generating an answer by
using the query result in the context of the LLM.

In the following section, we describe how the various features
described above are implemented in PROLIT.

3 SYSTEM DESCRIPTION
3.1 System Architecture
The logical architecture of PROLIT is shown in Figure 2.

The input to the system is a script 𝑠 that implements a pipeline
of operations. The first component ➊ performs, with the help of
an LLM, a rewriting of 𝑠 where the various activities are iden-
tified and documented by annotating the original script. This
component also produces an internal dictionary ➋ that includes
a detailed description of each operation involved in the pipeline.
The new script is then executed in the running environment ➌

for which it was originally developed. The provenance generator
➍ analyzes the effect of each operator in the pipeline at execu-
tion time by: (i) comparing the input(s) and output datasets for
that command; and (ii) producing a provenance graph fragment
that captures the dependencies for the data elements that have
changed, reflecting the specific change pattern and injecting the
operation descriptions stored in the dictionary; and (iii) writing
the resulting provenance fragment into a graph database (in this
implementation we use Neo4j1).
1https://neo4j.com/

1139



The complete provenance graph that becomes available at
the end of execution can be analyzed using native, direct access
to Neo4j ➎ and associated graph visualization, but also using a
new component ➏ that translates user questions expressed in
natural language into Cypher queries over the underlying graph
database and returns the result in the form of textual narratives
about provenance.

In components ➊ and ➏ of PROLIT we have used llama-
3.1-8B as Large Language Model and Langchain2 as mediator
between the LLM and the rest of the system, facilitating both the
collection and analysis of provenance data.

3.2 PROLIT in Action
Let us consider, as a simple example, the following (toy) dataset
in Figure 3, where we ultimately wish to use Country, Age, and
Salary to predict whether or not a customer has made a Purchase.
Missing values are present, such as the age for the third row.

Country Age Salary Purchased
France 44.0 72000.0 No
Spain 27.0 48000.0 Yes
Germany — 54000.0 No
Italy — 27000.0 No

Figure 3: Sample Dataset

The following typical sequence of operations, simplified here
for the sake of the example, first creates a new dataframe that
only contains the predictors, and then adjusts this new dataframe
by imputing the missing values for Age.

1 # Separate features and target variable
2 df = df.iloc[:, :-1]
3 # Impute missing values in the Age column
4 df['Age'].fillna(df['Age'].mean(), inplace=True)

The result is shown in Figure 4.

Country Age Salary
France 44.0 72000.0
Spain 27.0 48000.0
Germany 35.5 54000.0
Italy 35.5 27000.0

Figure 4: Sample Dataset after pipeline execution

Figure 5 shows fragments of the resulting provenance graphs
at each level of detail. Through this visual interface, users can
choose their preferred level of detail and incrementally inspect
the graph by selectively expanding on each of the nodes.

In addition, Figure 6 shows an example of PROLIT’s ability to
interact with the provenance graph using natural language and
to obtain detailed explanations. This capability is particularly
valuable as it allows users to obtain insights into the data ma-
nipulation process in an intuitive and accessible manner, making
it comprehensible even for individuals with limited technical
expertise.

2https://www.langchain.com/langchain

(a) Sketch-Level Provenance: High-level overview, showing activi-
ties and single entity nodes per relationship.

(b) Derivation-Level Provenance: Expands the sketch level by
adding DerivedFrom links between entity nodes.

(c) Complete Provenance: Full provenance with all entities, activi-
ties, and relationships.

(d) Columns-Level Provenance: Focuses on schema-level transfor-
mations.

Figure 5: Granularity levels for the data provenance of the
example pipeline. Orange nodes represent entities, blue
nodes represent columns, and purple nodes represent activ-
ities. Nodes can be further inspected by clicking on them.

1140



Figure 6: An example of how PROLIT provides insights on
a pipeline through narratives over provenance data.

4 DEMO OUTLINE
In our demonstration, we will simulate typical scenarios of data
preprocessing in data science aimed at giving a comprehensive
view of PROLIT and leading to discussions on supporting data
science processes with provenance data.

Scenario A: Provenance Capture. In this scenario, we demon-
strate how PROLIT captures provenance for some predefined
processing pipelines. The audience will be invited to choose one
of those pipelines and see how the provenance graph is auto-
matically built with negligible overhead. This demonstrates how
transparently and efficiently provenance can be easily integrated
into data flows with our system.

Scenario B: Configuring Provenance Granularity. Building
on the provenance collected from Scenario A, this scenario allows
users to adjust the granularity of the provenance, as discussed in
the previous sections. Users can explore how different levels of
detail impact the structure and depth of the provenance graph,
allowing for a tailored approach based on the specific needs of
the analyst.

Scenario C: Interactive Provenance Narratives. In this sce-
nario, we showcase the capability of PROLIT to produce narra-
tives over the provenance graph. Users will be invited to interact
with the system by asking specific questions about the effect of
the input pipeline and commenting on the responses provided by
the system. This interactivity allows the audience to find out how
provenance data can provide meaningful insights into pipelines
and comprehensible explanations of their effect on data.

The audience will be able to iterate through Scenarios A, B, and
C to explore the impact of the choices made in Scenario A to
Scenarios B and C.

5 CONCLUSION
In this paper, we have illustrated the development of a system,
called PROLIT, for collecting and managing data provenance
in data preparation pipelines to support the subsequent activity
of machine learning. PROLIT addresses some of the critical
needs for transparency and interpretability in machine learning
systems, as those become key requirements for MLOps and AI
deployment.

PROLIT is designed to support the most common data manip-
ulation operators, as found in the most spread data manipulation
libraries for Python. It is designed to be extensible and flexible,
with support from pre-trained LLM to identify logical units of
computation within a script and provide narratives about prove-
nance. PROLIT offers a way to track data manipulations at three
different levels of granularity. These are recorded into a Neo4J
graph database, which can then be queried to generate suitable
data-centric explanations.

Our demonstration aims to show the distinctive capabilities
that PROLIT can offer to data scientists, its minimal impact on
the data science process, and its ability to provide insight and
explanations about data manipulation pipelines innovatively and
easily.

ACKNOWLEDGMENTS
This work is partially supported by the PNRR-MUR project
PE0000013-FAIR and by the PRIN-MUR project 2022XERWK9-S-
PIC4CHU.

REFERENCES
[1] Adriane Chapman, Luca Lauro, Paolo Missier, and Riccardo Torlone. 2024. Sup-

porting Better Insights of Data Science Pipelines with Fine-grained Provenance.
ACM Trans. Database Syst. 49, 2, Article 6 (2024). https://doi.org/10.1145/
3644385

[2] Adriane Chapman, Paolo Missier, Luca Lauro, and Riccardo Torlone. 2022.
DPDS: Assisting Data Science with Data Provenance. PVLDB 15, 12 (2022), 3614
– 3617. https://doi.org/10.14778/3554821.3554857

[3] Boris Glavic and Gustavo Alonso. 2009. Perm: Processing Provenance and
Data on the Same Data Model through Query Rewriting. In Proc. of ICDE. IEEE
Computer Society, 174–185. https://doi.org/10.1109/ICDE.2009.15

[4] Melanie Herschel, Ralf Diestelkämper, and Houssem Ben Lahmar. 2017. A
survey on provenance: What for? What form? What from? The VLDB Journal
26, 6 (2017), 881–906. https://doi.org/10.1007/S00778-017-0486-1

[5] Paolo Missier, Khalid Belhajjame, and James Cheney. 2013. The W3C PROV
family of specifications for modelling provenance metadata. In Proc. of EDBT
(Tutorial). ACM. https://doi.org/10.1145/2452376.2452478

[6] Mohammad Hossein Namaki, Avrilia Floratou, Fotis Psallidas, Subru Krishnan,
Ashvin Agrawal, Yinghui Wu, Yiwen Zhu, and Markus Weimer. 2020. Vamsa:
Automated Provenance Tracking in Data Science Scripts. In Proc. of KDD. ACM,
1542–1551. https://doi.org/10.1145/3394486.3403205

[7] João Felipe Pimentel, Juliana Freire, Leonardo Murta, and Vanessa Braganholo.
2019. A survey on collecting, managing, and analyzing provenance from scripts.
Comput. Surveys 52, 3 (2019), 1–38. https://doi.org/10.1145/3311955

[8] Sebastian Schelter, Joos-Hendrik Böse, Johannes Kirschnick, Thoralf Klein, and
Stephan Seufert. 2018. Declarative metadata management: A missing piece in
end-to-end machine learning. In Proc. of SysML Conference.

1141


