As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Digital breast tomosynthesis (DBT) is one of the powerful breast cancer screening technologies. DBT can improve the ability of radiologists to detect breast cancer, especially in the case of dense breasts, where it beats mammography. Although many automated methods were proposed to detect breast lesions in mammographic images, very few methods were proposed for DBT due to the unavailability of enough annotated DBT images for training object detectors. In this paper, we present fully automated deep-learning breast lesion detection methods. Specifically, we study the effectiveness of two data augmentation techniques (channel replication and channel-concatenation) with five state-of-the-art deep learning detection models. Our preliminary results on a challenging publically available DBT dataset showed that the channel-concatenation data augmentation technique can significantly improve the breast lesion detection results for deep learning-based breast lesion detectors.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.