IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Advances in Modeling for Real-world Speech Information Processing and its Application
Automatic Vocabulary Adaptation Based on Semantic and Acoustic Similarities
Shoko YAMAHATAYoshikazu YAMAGUCHIAtsunori OGAWAHirokazu MASATAKIOsamu YOSHIOKASatoshi TAKAHASHI
Author information
JOURNAL FREE ACCESS

2014 Volume E97.D Issue 6 Pages 1488-1496

Details
Abstract
Recognition errors caused by out-of-vocabulary (OOV) words lead critical problems when developing spoken language understanding systems based on automatic speech recognition technology. And automatic vocabulary adaptation is an essential technique to solve these problems. In this paper, we propose a novel and effective automatic vocabulary adaptation method. Our method selects OOV words from relevant documents using combined scores of semantic and acoustic similarities. Using this combined score that reflects both semantic and acoustic aspects, only necessary OOV words can be selected without registering redundant words. In addition, our method estimates probabilities of OOV words using semantic similarity and a class-based N-gram language model. These probabilities will be appropriate since they are estimated by considering both frequencies of OOV words in target speech data and the stable class N-gram probabilities. Experimental results show that our method improves OOV selection accuracy and recognition accuracy of newly registered words in comparison with conventional methods.
Content from these authors
© 2014 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top