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Abstract. As artificial intelligence (AI) systems become increasingly
integrated into everyday life, the need for trustworthiness in these systems
has emerged as a critical challenge. This tutorial paper addresses the
complexity of building trust in AI systems by exploring recent advances in
explainable AI (XAI) and related areas that go beyond mere interpretabil-
ity. After reviewing recent trends in XAI, we discuss how to control AI
systems, align them with societal concerns, and address the robustness,
reproducibility, and evaluation concerns inherent in these systems. This
review highlights the multifaceted nature of the mechanisms for building
trust in AI, and we hope it will pave the way for further research in this
area.

1 Introduction

As machine learning and deep learning have become widespread, it has become
apparent that trust is a major challenge faced in artificial intelligence (AI). In-
deed, experts, users or even ordinary citizens interact on a regular basis with
AI systems that recommend content, suggest decisions, control devices, etc. As
these interactions affect people’s lives, AI systems must be trustworthy. Ac-
cordingly, in the EU, the high-level expert group on artificial intelligence1 has
issued the Ethics Guidelines for Trustworthy AI that identify three components
for trustworthy AI: it should be lawful, ethical and robust. Seven requirements
are thus proposed: (i) human agency and oversight, (ii) technical robustness and
safety, (iii) privacy and data governance, (iv) transparency, (v) diversity, non-
discrimination and fairness, (vi) societal and environmental well-being and (vii)
accountability. Following these principles, this tutorial paper aims to show how
the AI literature goes beyond interpretability and offers more complex mecha-
nisms to build trust with AI systems. Section 2 reviews recent trends in XAI
(req. iv), Section 3 shows how to control AI systems (req. i), Section 4 discusses
how to align them with societal concerns (req. v), Section 5 tackles the robust-
ness and reproducibility of AI algorithms (req. ii), Section 6 reflects on their
evaluation (req. vii) and Section 7 concludes with perspectives.

1https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai
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2 Trends in XAI

eXplainable AI (XAI) is a sub-field of AI concerned with making AI systems
transparent, said otherwise, capable of delivering justifications of the reasons
behind a verdict or recommendation. Explainability is particularly appealing
for black-box AI models that resort to latent data representations and transfor-
mations such as those conducted by neural networks and other machine learning
(ML) methods. Moreover, it can be a legal requirement in some circumstances,
and an increasing body of evidence suggests its positive impact on user confi-
dence and trust in AI [1]. Research in XAI has gained traction in the last 6 years
– in part thanks to the publication of GDPR [2, 3]2 – and its realm transcends
the domain of AI for it intersects not only with other subfields of computer sci-
ence such as human-computer interaction (HCI) or algorithmic fairness but also
with disciplines such as psychology and cognitive sciences.

The first efforts to bring explainability to black-boxes models originated from
the ML community and focused on post-hoc global explanations, mostly on su-
pervised ML models [2]. Later efforts focused then on more precise local ex-
planations that shed light on the logic of an AI model when confronted with a
particular input, often called the target instance. Popular explanation methods
such as LIME [4], SHAP [5] or LORE [6] work in a post-hoc manner. However,
an important body of literature has put effort into developing neural-based ap-
proaches that can “predict” and explain at the same time [7]. Those include the
extensive list of methods in neurosymbolic reasoning [8]. While explainability on
supervised ML dominates the landscape, some works have also studied the prob-
lem of bringing explainability to unsupervised or self-supervised ML tasks such
as clustering, representation learning or dimensionality reduction [9, 10, 11].

Despite its prominent position within the AI landscape, the notion of ex-
plainability, and the related concept of interpretability [12], also depend on a
handful of user-related aspects such as the user’s background, the stakes behind
the interaction with the AI system, and the purpose of the explanation process
itself. This realisation has motivated the human-centred AI research community
– at the crossroads of the XAI and HCI communities – to study the impact of ex-
planations on some cognitive aspects such as understanding, trust or perceived
fairness [13, 14, 15]. The overarching goal of such studies is to derive design
lessons for the development of efficient and trustworthy AI systems. This builds
upon the assumption that complacency effects aside, explainability increases the
trustworthiness of AI systems – an assumption that is confirmed by a large body
of literature [1]. On the other hand, the diversity of use cases for XAI has made it
impossible to develop a one-size-fits-all explainability technique. Instead, current
research in XAI has shifted towards defining or improving different explanation
paradigms (feature attribution, rules, abductive, counterfactual, adversarial ex-
planations, etc.) applied to specific models or tasks. Other approaches have
focused on endowing explanations with desirable properties such as diversity,
realism (for counterfactual explanations) or robustness [16, 17, 18, 19], or sim-

2https://gdpr-info.eu/
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ply studying the theoretical and functional (e.g., adherence, stability) properties
guaranteed by a particular explanation approach [20, 21].

Finally, the emergence of large language models, smart assistants, and gen-
erative AI have triggered new research questions on how to explain the inner
workings of such complex models. They pose challenges for XAI researchers not
only because of the nature of their underlying techniques but also due to their
multi-modal nature, which will require them to extend the notions of explana-
tions. But XAI novel research trends are also concerned with how to exploit
the human-like language capabilities of such models to build comprehensible
explanations, like the ones a human pedagogue could offer [22].

3 Constraints

One of the major issues with ML and deep learning models is inherent in how
they are learned. Indeed, one typically collects information about a task in the
form of a dataset, i.e., a collection of pairs of instances (patients, images, etc.)
and targets (pathology, class, etc.). Then, the dataset supervises the optimisa-
tion of the ML or deep learning model through an objective function (typically,
a measure of discrepancy between expected targets and model predictions). Yet,
albeit this approach is efficient in obtaining good predictors, it provides no guar-
antee that it satisfies constraints that arise from the domain itself (e.g., physi-
cal constraints) or societal imperatives (e.g., legal or ethical considerations). In
many cases, this may be a sufficient reason to not trust and reject models: credit
denial based on illegal grounds, predictions that violate physical laws, etc.

Trust in models can be improved if users get some control over them. This can
be achieved through different mechanisms, including constraint enforcement, in-
teractivity and alignment with societal imperatives (see Section 4). Constraints
can be either model-specific or model-agnostic. For example, decision trees
(DTs) can be constrained at three levels [23, 24, 25]. First, one can control
the structure of a DT by restricting its number of nodes, depth, number of leaf
nodes, etc. Second, constraints can also be expressed w.r.t. attributes that
can be associated with costs (of using them in a decision), ordering (of the at-
tributes in decision paths), incompatibilities (some attributes cannot be used in
the same decision path), etc. For example, in a medical application, a DT would
be expected to start with cheap, harmless tests (e.g., medical examination or
blood work) and then move to expensive, harmful tests (e.g., X-ray or invasive
procedures). Third, instance-level constraints make sure that some instances
are classified (or not) in the same leaf or that the prediction is correct for some
critical instances. Another well-known example of model-specific constraints
is the L1 regularisation [26] of linear models to balance their complexity and
interpretability.

Model-agnostic constraints are expressed in terms of the prediction proper-
ties. For example, the prediction can be constrained to be monotonic w.r.t. some
key feature, like in credit rating [27]. Monotonicity can be enforced even in com-
plex neural networks by simply adding a regularisation term, like in Monteiro et
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al. [28]. Otherwise, the model often does not satisfy such constraints, or doing
so requires a large amount of data. More complex domain constraints can also
be expressed, for example in physics-informed ML, where physical laws are used
both to guide and control learning algorithms. Karniadakis et al. [29] describe
an example where a neural network is learned with two aggregated losses: a clas-
sical loss based on data measurements and a “physical” loss that penalises the
neural network if its output does not conform to a partial differential equation.

Interaction is another way to constrain ML algorithms. Interactive ML [30,
31] has been an active field of research in dimensionality reduction for infor-
mation visualisation [32], but also in classification or regression to align models
with users’ expectations and to make them easier to understand.

4 Ethical, Fairness and Acceptability Issues

A fundamental aspect of trust in AI systems is their adherence to strong ethical
requirements. The inclusion of advanced ML algorithms has put fairness [33] at
the centre of the attention of AI researchers, but also the general public. Indeed,
unfair systems can now impact everyone, from being attributed higher chances
of crime recidivism because of skin colour [34, 35], or misclassified as “primates”
in generated video caption featuring black people3 [36] to being denied credit
because of gender4. Such tip-of-the-icebergs abound, are not always easy to
detect nor to prevent and have detrimental impact not only on the users, but
also on the reputation of the companies owning and deploying these systems.

This problem is not new and the community offers various mitigation strate-
gies, as mapped by recent surveys [37, 38]. The main goal of such techniques is
to ensure that a given AI-enabled system gives the same predictions for inputs
that differ only on sensitive attributes (gender, age, etc.) that we want to pro-
tect from unfair decisions. Equal treatment can occur for individual inputs or
groups. Mehrabi et al. classify fairness mitigation approaches in three categories
[37]. Pre-processing techniques transform the data [39] so that the underlying
discrimination is not presented to the learning algorithm. In-processing tech-
niques affect the learning algorithm by itself, by ensuring it cannot predict the
value of the sensitive attribute while predicting the main attribute [40]. Finally,
post-processing methods learn an auditing model to identify the inputs where
the model under study makes more mistakes. Based on such an auditor, one
can derive weights to fix predictions [41]. Bellamy et al. integrates other post-
processing strategies [42]. It is also possible to combine categories by leveraging
adversarial ML [43]. In addition, it is also possible to assess the sensitivity to
fairness perturbations once the model is deployed in production [44].

Despite the large variety of existing methods, some problems remain. There
is no unique definition of fairness as noted by Mehrabi et. al [37]. It leads to a
plethora of fairness metrics, sometimes conflicting with each other [45]. Verma
and Rubin demonstrated that a given classifier may appear fair or unfair depend-

3https://www.nytimes.com/2021/09/03/technology/facebook-ai-race-primates.html 
4https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-

problem/
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ing on the used notion of fairness [46]. This also challenges the interpretability
of fairness-aware models. The EU guidelines for trustworthy AI mention one
should seek an “adequate” definition of fairness. The evaluation of such ade-
quacy remains an open problem [38].

5 Robustness and Reproducibility

Generally speaking, robustness and reproducibility are concerned with the desire
that ML models and their explanations do not change significantly if experiments
or evaluations are repeated under possibly slightly changing conditions. It is
well known that deep architectures, and more generally ML models for high
dimensional data, are brittle to small changes in inputs [47]. This effect transfers
to explanations of models in different aspects [17, 48, 49].

Explanation schemes can be vulnerable to small variations of the scenario
due to their design choices; e.g., gradient-based schemes such as saliency maps
suffer from non-differentiable activation functions such as ReLu, hence non-
continuous gradients. This renders alternative reference points such as those
used in DeepLift preferable [50]. Further, explanations can be adversarially
attacked [51], enabling the possibility to manipulate, fool, or fairwash explana-
tions, i.e., explanations get useless or misleading on purpose. As for defences of
models against attacks, various defences against adversarial attacks on explana-
tions have been proposed such as robustness to data shift [52]; yet these cannot
faithfully prevent all possible attacks. A third challenge is given by the fact
that faithful explanations depend on the faithfulness of the underlying model to
the modelled process, hence perturbations and noise which cause challenges to
process inference do also affect the robustness of explanations [48].

One fundamental problem underlying this brittleness of XAI technologies lies
in the fact that many modern explanation techniques are based on correlations
rather than causal effects, as their purpose is to increase the accessibility of sta-
tistical black box models to humans. Such models are usually based on families
of functions which possess the universal approximation capability, the underlying
model parameters are neither meaningful nor identifiable, and the uniqueness of
a function which fits the given data satisfactorily is not necessarily given. Given
such fuzzy starting conditions for XAI techniques, it is not surprising that the
latter do not necessarily provide the (unique) explanation a human would expect
in typical model situations [53].

6 Experimental evaluation

Experimental evaluation of XAI technologies faces the challenge that there is no
unique mathematical notion about what is a good explanation. Hence evaluation
schemes can follow several avenues: there exist general desiderata which are
intrinsic to the model or explanation scheme such as content-oriented criteria
including correctness, completeness, or consistency, and representation-based
aspects such as compactness [54].
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Besides intrinsic quantitative evaluation criteria, extrinsic evaluation can be
based on benchmark datasets, where data with known ground truth has been
generated. Thereby, the ground truth is typically available as data have been
manipulated in a specific way, i.e. relevant features or causal relations are known.
Examples include benchmarks for the visual domain [55], approaches tailoring
the evaluation of large-scale comparison of post-hoc XAI methods [56], or unit
tests for attribution methods [53], to name just a few. Thereby, evaluation suites
are available in the form of XAI benchmarking tools such as OpenXAI [57] or
other toolboxes as summarized in the work [58].

Ultimately, XAI technologies need to be successful in settings where humans
are using or interacting with AI technologies, i.e., XAI methodologies need to be
evaluated in user studies. Here the problem arises that many effects are depen-
dent on the specific application domain and user expertise, such that systematic
overarching effects of XAI technologies are hard to evaluate. Further, it is un-
clear whether effects are due to the specific XAI technology or they can be traced
back to how explanations are expressed, such as demonstrated w.r.t. the direc-
tion of an explanation (i.e., whether the same information is phrased positively
or negatively [14]). Further, several user studies have been published, targeting
not only different XAI technologies, but also evaluation criteria, targeting trust,
understanding, or usability [59], whereby effects of XAI technologies are par-
tially positive but partially insignificant, or they do not transfer to effects when
transferred across scenarios. Hence overarching insight about positive effects
which has been validated in user studies is yet limited.

7 Conclusion

Albeit regulations such as the EU’s AI Act demand human agency and oversight
of high-risk AI systems as well as foundational models, the question of how
far this can reliably be implemented by current XAI technologies and how its
auditing can take place remains a challenge. Indeed, it has been debated how far
EU’s formalization falls prey to a too simplistic conceptualization of trust [60],
especially in the light of the stark difference of trust and trustworthiness [1], and
the richness of human explanations in social practice [61]. Accordingly, beyond
recent advances in dynamic XAI schemes and possibilities of explaining effects
of interaction [62, 63], there is a need for contextualized XAI schemes which can
appropriately take into account human expertise and expectations as well as the
situated objectives of a given scenario [64]. Further, the role of uncertainty and
limitations of both, models and XAI technologies, constitutes a very important
aspect which is yet only partially understood [65].

Examples in this paper show that trust needs to be achieved through different
mechanisms (explicability, constraints, fairness, robustness, auditing, etc.) and
offer a bright future for the field that will continue to grow and expand.
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Explanations? In Proceedings of the 31st ACM International Conference on Informa-
tion & Knowledge Management, CIKM ’22, page 355–364, New York, NY, USA, 2022.
Association for Computing Machinery.

[22] Dylan Z Slack, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. Explain-
ing machine learning models with interactive natural language conversations using talk-
tomodel. Nature Machine Intelligence, 5, 2023.
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