Skip to main content
Log in

Nonmonotonic reasoning: from complexity to algorithms

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The purpose of this paper is to outline various results regarding the computational complexity and the algorithms of nonmonotonic entailment in different coherence‐based approaches. Starting from a (non necessarily consistent) belief base E and a pre‐order on E, we first present different mechanisms for selecting preferred consistent subsets. Then we present different entailment principles in order to manage these multiple subsets. The crossing point of each generation mechanism m and each entailment principle p defines an entailment relation \( (E, \leqslant )\left| \sim \right.^{p,m} \Phi \) which we study from the computational complexity point of view. The results are not very encouraging since the complexity of all these nonmonotonic entailment relations is, in most restricted languages, larger than the complexity of monotonic entailment. So, we decided to extend Binary Decision Diagrams technics, which are well suited to the task of solving NP‐hard logic‐based problems. Both theoretical and experimental results are described along this line in the last sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. S. Benferhat, C. Cayrol, D. Dubois, J. Lang and H. Prade, Inconsistency management and prioritized syntax-based entailment, in: Proc. of the 13th IJCAI, ed. R. Bajcsy, Chambéry, France (1993) pp. 640-645.

  2. S. Benferhat, D. Dubois and H. Prade, Argumentative inference in uncertain and inconsistent knowledge bases, in: Proc. of the 9th UAI, eds. D. Heckerman and A. Mamdani (Morgan Kaufmann, Washington, DC, 1993) pp. 411-419.

    Google Scholar 

  3. K.S. Brace, R.R. Rudell and R.E. Bryant, Efficient implementation of a BDD package, in: 27th ACM/IEEE Design Automation Conference(1990) pp. 40-45.

  4. G. Brewka, Preferred subtheories: An extended logical framework for default reasoning, in: Proc. of the 11th IJCAI, Detroit, MI (1989) pp. 1043-1048.

  5. R.E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE Transactions on Computers 35(8) (1986) 677-691.

    MATH  Google Scholar 

  6. R.E. Bryant, Symbolic boolean manipulation with ordered binary-decision diagrams, ACM Computing Surveys 24(3) (September 1992) 293-318.

    Article  Google Scholar 

  7. M. Cadoli and M. Schaerf, A survey of complexity results for non-monotonic logics, Journal of Logic Programming 17 (1993) 127-160.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Cayrol and M.-C. Lagasquie-Schiex, Comparaison de relations d'inférence non-monotone: étude de complexité, Rapport de Recherche 93-23R, Institut de Recherche en Informatique de Toulouse (I.R.I.T.), France (September 1993).

    Google Scholar 

  9. C. Cayrol and M.-C. Lagasquie-Schiex, Non-monotonic syntax-based entailment: A classification of consequence relations, in: Proc. of ECSQARU-95, Lecture Notes in Artifical Intelligence 946, Fribourg, Switzerland (1995) pp. 107-114.

    Google Scholar 

  10. C. Cayrol, V. Royer and C. Saurel, Management of preferences in assumption-based reasoning, in: Advanced Methods in AI, Lecture Notes in Computer Science 682 (1992) pp. 13-22.

  11. T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms(MIT Press, Cambridge, MA, 1990).

    Google Scholar 

  12. R. Dechter and A. Dechter, Belief maintenance in dynamic constraint networks, in: Proc. of AAAI-88, St. Paul, MN (1988) pp. 37-42.

  13. D. Dubois, J. Lang and H. Prade, Inconsistency in possibilistic knowledge bases - to live or not to live with it, in: Fuzzy Logic for the Management of Uncertainty, eds. L.A. Zadeh and J. Kacprzyk (1991) pp. 335-351.

  14. F. Dupin de Saint Cyr, J. Lang and T. Schiex, Gestion de l'inconsistance dans les bases de connaissances: une approche syntaxique basée sur la logique des pénalités, in: Actes de RFIA' 94, France (1994) pp. 507-518.

  15. T. Eiter and G. Gottlob, On the complexity of propositional knowledge base revision, updates, and counterfactuals, Artificial Intelligence 57 (1992) 227-270.

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Eiter and G. Gottlob, The complexity of logic-based abduction, in: Proc. of the 10th Symposium on Theoretical Aspects of Computing (STACS-93), Würzburg, Germany (1993) pp. 70-79.

  17. P. Gärdenfors and D. Makinson, Nonmonotonic inference based on expectations, Artificial Intelligence 65 (1994) 197-245.

    Article  MATH  MathSciNet  Google Scholar 

  18. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NPcompleteness(Freeman, New York, 1979).

    Google Scholar 

  19. G. Gogic, C.H. Papadimitriou and M. Sideri, Incremental recompilation of knowledge, in: Proc. of AAAI-94, Seattle, WA (1994) pp. 922-927.

  20. G. Gottlob, Complexity results for nonmonotonic logics, Journal of Logic and Computation 2(3) (1992) 397-425.

    MATH  MathSciNet  Google Scholar 

  21. P. Jégou, A logical approach to solve dynamic CSPs: Preliminary report, in: Proc. ECAI' 94 Workshop on Constraint Satisfaction Issues Raised by Practical Applications, Amsterdam, The Netherlands (August 1994) pp. 87-94.

  22. P. Jégou and F. Bouquet, Solving over-constrained CSP using weighted OBDD, in: Proc. of the CP' 95 Workshop on Over-Constrained Systems, Cassis, France (September 1995).

  23. D.S. Johnson, A catalog of complexity classes, in: Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity, ed. J. van Leeuwen (Elsevier, 1990) Chapter 2, pp. 67-161.

  24. H.A. Kautz and B. Selman, Hard problems for simple default logics, Artificial Intelligence 49 (1991) 243-279.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. De Kleer, An assumption-based TMS, Artificial Intelligence 28 (1986) 127-162.

    Article  Google Scholar 

  26. M.-C. Lagasquie-Schiex, Contribution à l'étude des relations d'inférence non-monotone combinant inférence classique et préférences, Thèse, Université Paul Sabatier, IRIT (1995).

  27. C.Y. Lee, Representation of switching circuits by binary-decision programs, Bell System Tech. J. 38(4) (1959) 985-999.

    MATH  MathSciNet  Google Scholar 

  28. D. Lehmann, Another perspective on default reasoning, Rapport de recherche 92-12, Leibniz Center for Research in Computer Science, Hebrew University of Jerusalem, Israel (July 1992).

    Google Scholar 

  29. H. Levesque, D. Mitchell and B. Selman, Hard and easy distributions of SAT problems, in: Proc. of AAAI-92, San Jose, CA (1992) pp. 459-465.

  30. J. Lobo, J. Minker and A. Rajasekar, Disjunctive deductive databases, in: Foundations of Disjunctive Logic Programming(MIT Press, 1992) Chapter 9, pp. 217-244.

  31. B. Nebel, Belief revision and default reasoning: Syntax-based approaches, in: Proc. of the 2nd KR, Cambridge, MA (1991) pp. 417-428.

  32. G. Pinkas and R.P. Loui, Reasoning from inconsistency: A taxonomy of principles for resolving conflict, in: Proc. of the 3rd KR, Cambridge, MA (1992) pp. 709-719.

  33. R. Reiter, A logic for default reasoning, Artificial Intelligence 13(1-2) (1980) 81-132.

    Article  MATH  MathSciNet  Google Scholar 

  34. B. Selman and H. Kautz, Knowledge compilation using horn approximations, in: Proc. of AAAI-91, Anaheim, CA (1991) pp. 904-909.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cayrol, C., Lagasquie‐Schiex, M. & Schiex, T. Nonmonotonic reasoning: from complexity to algorithms. Annals of Mathematics and Artificial Intelligence 22, 207–236 (1998). https://doi.org/10.1023/A:1018939502485

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018939502485

Keywords