Abstract
Background
Artificial intelligence (AI) is able to emulate human performance on a task and may improve the radiologists’ work. This text and opinion review explored the implementation of AI in diagnostic radiology education curricula at pre-licensure training/education in healthcare. The question was: what are the pedagogical possibilities, advantages and challenges of AI use in diagnostic radiology education?
Methods
Primary research studies, reviews, systematic reviews, meta-analyses, letters, texts, expert opinions, expert consensus, discussion papers and guidelines about diagnostic radiology education at the undergraduate and postgraduate levels of any field of health sciences were considered. Searches were conducted on indexed databases and grey literature. Data on the context, potentials and challenges were collected from the text and opinion papers and the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Text and Opinion Papers was applied to assess methodological quality. From the experience papers, intervention, experiences and results were extracted parameters and an adapted JBI Critical Appraisal Checklist for Case Reports was applied.
Results
Seventeen studies met the inclusion criteria. Personalization, training facilities and the standardization of radiology teaching were the main potentials identified. Five main challenges were also observed: the validation of AI tools in radiology education, the learning curve, universities’ aptitude to teach AI, the digitization of radiological images and how to include AI in radiology curricula.
Conclusion
The necessity to update radiology curricula to include AI is a consensus. Time is required for development of the learning curve among AI developers, teachers and trainees. When and to what extent AI should be taught in radiology courses needs further exploration.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The authors declare that they had full access to all of the data in this study and the authors take complete responsibility for the integrity of the data and the accuracy of the data analysis.
References
Balthazar, P., Tajmir, S., Ortiz, D., Herse, C., Shea, L., Seals, K., Cohen-Addad, D., Purkayastha, S., & Gichoya, J. (2020). The Artificial Intelligence Journal Club (#RADAIJC): a multi-institutional Resident-Driven web-based Educational Initiative. Academic Radiology, 27(1), 136–139. https://doi.org/10.1016/J.ACRA.2019.10.005.
Challen, R., Denny, J., Pitt, M., Gompels, L., Edwards, T., & Tsaneva-Atanasova, K. (2019). Artificial intelligence, bias and clinical safety. BMJ Quality and Safety, 28(3), 231–237. https://doi.org/10.1136/bmjqs-2018-008370.
Chan, K. S., & Zary, N. (2019). Applications and Challenges of implementing Artificial Intelligence in Medical Education: integrative review. JMIR Medical Education, 5(1), e13930. https://doi.org/10.2196/13930.
Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: a review. Ieee Access : Practical Innovations, Open Solutions, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510.
Collado-Mesa, F., Alvarez, E., & Arheart, K. (2018). The role of Artificial Intelligence in Diagnostic Radiology: a Survey at a single Radiology Residency Training Program. Journal of the American College of Radiology, 15(12), 1753–1757. https://doi.org/10.1016/j.jacr.2017.12.021.
Collins, F. S., & Varmus, H. (2015). A New Initiative on Precision Medicine. New England Journal of Medicine, 372(9), 793–795. https://doi.org/10.1056/nejmp1500523.
Culbertson, M. (2016). Bayesian networks in Educational Assessment: the state of the field. Applied Psychological Measurement, 40(1), 3–21.
Duong, M. T., Rauschecker, A. M., Rudie, J. D., Chen, P. H., Cook, T. S., Bryan, R. N., & Mohan, S. (2019). Artificial intelligence for precision education in radiology. British Journal of Radiology, 92(1103), 20190389. https://doi.org/10.1259/bjr.20190389.
Ellis, L. (2019). Artificial intelligence for precision education in radiology - experiences in radiology teaching from a UK foundation doctor. British Journal of Radiology, 92(1104), 20190779. https://doi.org/10.1259/bjr.20190779.
Fischetti, C., Bhatter, P., Frisch, E., Sidhu, A., Helmy, M., Lungren, M., & Duhaime, E. (2021). The evolving importance of Artificial Intelligence and Radiology in Medical Trainee Education. Academic Radiology, 18(21), 00143–00144. :S10.
Forney, M. C., & McBride, A. F. (2020). Artificial Intelligence in Radiology Residency Training. Seminars In Musculoskeletal Radiology, 24(1), 74–80. https://doi.org/10.1055/s-0039-3400270.
Gallix, B., & Chong, J. (2019). Artificial intelligence in radiology: who’s afraid of the big bad wolf? European Radiology, 29(4), 1637–1639.
Gong, B., Nugent, J. P., Guest, W., Parker, W., Chang, P. J., Khosa, F., & Nicolaou, S. (2019). Influence of Artificial Intelligence on Canadian Medical Students’ preference for Radiology Specialty: A National Survey Study. Academic Radiology, 26(4), 566–577. https://doi.org/10.1016/j.acra.2018.10.007.
Gorospe-Sarasúa, L., Muñoz-Olmedo, J. M., Sendra-Portero, F., & de Luis-García, R. (2021). Challenges of Radiology education in the era of artificial intelligence. Radiologia, 6(20), 30135–30131. https://doi.org/10.1016/j.rx.2020.10.003. :S003.
Grayev, A. (2019). Artificial Intelligence in Radiology: Resident Recruitment Help or Hindrance? In Academic Radiology, 26(5), 699–700. Acad Radiol. https://doi.org/10.1016/j.acra.2019.01.005
Hasan Sapci, A., & Aylin Sapci, H. (2020). Artificial Intelligence Education and Tools for Medical and Health Informatics students: systematic review. JMIR Medical Education, 6(1), https://doi.org/10.2196/19285.
Joanna Briggs Institute (2017). JBI critical appraisal checklist for case series. (2017). In Adelaide, SA: The Joanna Briggs Institute. https://joannabriggs.org/sites/default/files/2019-05/JBI_Critical_Appraisal-Checklist_for_Case_Series2017_0.pdf
Joanna Briggs Institute (2017). JBI critical appraisal checklist for Text and Opinion. (2017). In Adelaide, SA: The Joanna Briggs Institute.
Kobayashi, Y., Ishibashi, M., & Kobayashi, H. (2019). How will “democratization of artificial intelligence” change the future of radiologists? Japanese Journal of Radiology, 37(1), 9–14.
Lakhani, P., Prater, A. B., Hutson, R. K., Andriole, K. P., Dreyer, K. J., Morey, J., Prevedello, L. M., Clark, T. J., Geis, J. R., Itri, J. N., & Hawkins, C. M. (2018). Machine learning in Radiology: Applications Beyond Image Interpretation. Journal of the American College of Radiology, 15(2), 350–359. https://doi.org/10.1016/j.jacr.2017.09.044.
Lameras, P., & Arnab, S. (2021). Power to the Teachers: an exploratory review on Artificial Intelligence in Education. Information, 13(1), 14. https://doi.org/10.3390/INFO13010014.
Lindqwister, A., Er, L., Hassanpour, S., Lewis, P. J., & Sin, J. M. (2020). AI-RADS: an artificial intelligence curriculum for residents. Academic Radiology, 15(20), 30556–30550. :S10.
McArthur, A., Klugarova, J., Yan, H., & Florescu, S. (2020). Chapter 4: Systematic Reviews of Text and Opinion. In JBI Manual for Evidence Synthesis. JBI. https://doi.org/10.46658/jbimes-20-05
Mintz, Y., & Brodie, R. (2019). Introduction to artificial intelligence in medicine. Minimally Invasive Therapy & Allied Technologies: MITAT : Official Journal of the Society for Minimally Invasive Therapy, 28(2), 73–81. https://doi.org/10.1080/13645706.2019.1575882.
National Imaging Informatics Curriculum and Course | RSNA. https://www.rsna.org/education/trainee-resources/national-imaging-informatics-curriculum-and-course
Nguyen, G. K., & Shetty, A. S. (2018). Artificial Intelligence and Machine Learning: Opportunities for Radiologists in Training. Journal of the American College of Radiology, 15(9), 1320–1321. https://doi.org/10.1016/j.jacr.2018.05.024. Radiol.
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the Future — Big Data, Machine Learning, and Clinical Medicine. The New England Journal of Medicine, 375(13), 1216. https://doi.org/10.1056/NEJMP1606181.
Ooi, S. K. G., Makmur, A., Soon, A. Y. Q., Fook-Chong, S., Liew, C., Sia, S. Y., Ting, Y. H., & Lim, C. Y. (2021). Attitudes toward artificial intelligence in radiology with learner needs assessment within radiology residency programmes: a national multi-programme survey. Singapore Medical Journal, 62(3), 126–134. https://doi.org/10.11622/smedj.2019141.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372. https://doi.org/10.1136/BMJ.N71
Pianykh, O. S., Langs, G., Dewey, M., Enzmann, D. R., Herold, C. J., Schoenberg, S. O., & Brink, J. A. (2020). Continuous learning AI in Radiology: implementation principles and early applications. Radiology, 297(1), 6–14. https://doi.org/10.1148/radiol.2020200038.
dos Pinto, D., Giese, D., Brodehl, S., Chon, S. H., Staab, W., Kleinert, R., Maintz, D., & Baeßler, B. (2019). Medical students’ attitude towards artificial intelligence: a multicentre survey. European Radiology, 29(4), 1640–1646. https://doi.org/10.1007/s00330-018-5601-1.
Pitts, N. B., Drummond, J., Guggenberger, R., Ferrillo, P., & Johnston, S. (2013). Incorporating new materials and techniques into clinical practice. Advances in Dental Research, 25(1), 33–40. https://doi.org/10.1177/0022034513502209.
Purohit, K. (2019). Growing interest in Radiology despite AI fears. Academic Radiology, 26(5), e75. https://doi.org/10.1016/j.acra.2018.11.024.
Raymond Geis, J., Brady, A. P., Wu, C. C., Spencer, J., Ranschaert, E., Jaremko, J. L., Langer, S. G., Kitts, A. B., Birch, J., Shields, W. F., van den Hoven, R., Kotter, E., Gichoya, J. W., Cook, T. S., Morgan, M. B., Tang, A., Safdar, N. M., & Kohli, M. (2019). Ethics of artificial intelligence in radiology: Summary of the joint european and north american multisociety statement. Radiology, 293(2), 436–440. https://doi.org/10.1148/radiol.2019191586.
Recht, M. P., Dewey, M., Dreyer, K., Langlotz, C., Niessen, W., Prainsack, B., & Smith, J. J. (2020). Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. European Radiology, 30(6), 3576–3584. https://doi.org/10.1007/s00330-020-06672-5.
Reyes, M., Meier, R., Pereira, S., Silva, C. A., Dahlweid, F. M., von Tengg-Kobligk, H., Summers, R. M., & Wiest, R. (2020). On the interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities. Radiology: Artificial Intelligence, 2(3), e190043. https://doi.org/10.1148/ryai.2020190043.
Richardson, M. L., Garwood, E. R., Lee, Y., Li, M. D., Lo, H. S., Nagaraju, A., Nguyen, X. V., Probyn, L., Rajiah, P., Sin, J., Wasnik, A. P., & Xu, K. (2020). Noninterpretive uses of Artificial Intelligence in Radiology. Academic Radiology, 28(9), 1225–1235. https://doi.org/10.1016/j.acra.2020.01.012.
Rogers, E. M. (2010). Diffusion of innovations (4th ed.). Simon and Schuster.
Roll, I., & Wylie, R. (2016). Evolution and revolution in Artificial Intelligence in Education. International Journal of Artificial Intelligence in Education, 26(2), 582–599. https://doi.org/10.1007/S40593-016-0110-3/TABLES/8.
Russell, S. J., & Norvig, P. (2021). Artificial intelligence: a modern approach. Boston: Pearson, 2020. https://search.library.wisc.edu/catalog/9910082172502121
Santos, G. N. M., da Silva, H. E. C., Leite, A. F., Mesquita, C. R. M., Figueiredo, P. T. S., Stefani, C. M., & Melo, N. S. (2021). The scope of dental education during COVID-19 pandemic: a systematic review. Journal of Dental Education, 85(7), 1287–1300. https://doi.org/10.1002/jdd.12587.
Schönberger, D. (2019). Artificial intelligence in healthcare: a critical analysis of the legal and ethical implications. International Journal of Law and Information Technology, 27(2), 171–203. https://doi.org/10.1093/IJLIT/EAZ004.
Simpson, S. A., & Cook, T. S. (2020). Artificial Intelligence and the Trainee experience in Radiology. Journal of the American College of Radiology, 17(11), 1388–1393. https://doi.org/10.1016/j.jacr.2020.09.028.
Slanetz, P. J., Daye, D., Chen, P. H., & Salkowski, L. R. (2020). Artificial Intelligence and Machine Learning in Radiology Education is Ready for Prime Time. Journal of the American College of Radiology, 17(12), 1705–1707. https://doi.org/10.1016/j.jacr.2020.04.022.
Tajmir, S. H., & Alkasab, T. K. (2018). Toward augmented Radiologists: changes in Radiology Education in the era of machine learning and Artificial Intelligence. Academic Radiology, 25(6), 747–750. https://doi.org/10.1016/j.acra.2018.03.007.
Tecuci, G. (2012). Artificial intelligence. WIREs Comput Stat, 4, 168–180. https://doi.org/10.1002/wics.200.
Tejani, A. S. (2021). Identifying and addressing barriers to an Artificial Intelligence Curriculum. Journal of the American College of Radiology, 18(4), 605–607. https://doi.org/10.1016/j.jacr.2020.10.001.
University of York: Centre for Reviews and Dissemination. [cited 2021 Oct 6]. (n.d.). Crd.York.Ac.Uk [Homepage on the Internet].
van Hoek, J., Huber, A., Leichtle, A., Härmä, K., Hilt, D., von Tengg-Kobligk, H., Heverhagen, J., & Poellinger, A. (2019). A survey on the future of radiology among radiologists, medical students and surgeons: students and surgeons tend to be more skeptical about artificial intelligence and radiologists may fear that other disciplines take over. European Journal of Radiology, 121, 108742. https://doi.org/10.1016/j.ejrad.2019.108742.
Wasserman, P., Freels, P., Szames, D., Kurra, C., Hern, & Ez, M. (2021). The TechnoPhysics Year: Transformation of Diagnostic Radiology’s Clinical Year as a Matter of Necessity. Academic Radiology, 28(9), 1287–1291.
Waymel, Q., Badr, S., Demondion, X., Cotten, A., & Jacques, T. (2019). Impact of the rise of artificial intelligence in radiology: what do radiologists think? Diagnostic and Interventional Imaging, 100(6), 327–336. https://doi.org/10.1016/J.DIII.2019.03.015.
Wiggins, W. F., Caton, M. T., Magudia, K., Glomski, S. A., George, E., Rosenthal, M. H., Gaviola, G. C., & Andriole, K. P. (2020). Preparing radiologists to lead in the era of Artificial Intelligence: Designing and implementing a Focused Data Science Pathway for Senior Radiology residents. Radiol Artif Intell, 2(6), e200057. https://doi.org/10.1148/ryai.2020200057.
Wood, M. J., Tenenholtz, N. A., Geis, J. R., Michalski, M. H., & Andriole, K. P. (2019). The need for a machine learning curriculum for radiologists. Journal of the American College of Radiology, 16(5), 740–742. https://doi.org/10.1016/j.jacr.2018.
Zanca, F., Hern, Ez-Giron, I., Avanzo, M., Guidi, G., Crijns, W., Diaz, O., Kagadis, G. C., Rampado, O., Lonne, P. I., Ken, S., Colgan, N., Zaidi, H., Zakaria, G. A., & Kortesniemi, M. (2021). Expanding the medical physicist curricular and professional programme to include Artificial Intelligence. Physica Medica-European Journal of Medical Physics, 83, 174–183.
Funding
This research was conducted without funding support.
Author information
Authors and Affiliations
Contributions
Glaucia N M Santos and Helbert E C da Silva contributed substantially to the conception or design of the work and the acquisition, analysis and interpretation of data for the work. Paulo T S Figueiredo, Carla R M Mesquita, Nilce S Melo, Cristine M Stefani and André F Leite drafted the work and revised it critically for important intellectual content.
Corresponding author
Ethics declarations
Declarations of Interest
The authors declare no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Santos, G.N.M., da Silva, H.E.C., Figueiredo, P.T.d. et al. The Introduction of Artificial Intelligence in Diagnostic Radiology Curricula: a Text and Opinion Systematic Review. Int J Artif Intell Educ 33, 1145–1174 (2023). https://doi.org/10.1007/s40593-022-00324-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40593-022-00324-z