Skip to main content
Log in

A novel low-rank matrix approximation algorithm for face denoising and background/foreground separation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Low-rank matrix recovery from an observation data matrix has received considerable attention in recent years, which has a wide range of applications in pattern recognition and computer vision, such as face denoising, background/foreground separation, gait recognition, image alignment, etc. However, existing algorithms suffer from the interference of small noise, for example, low-level Gaussian noise, which makes their performance not satisfactory. To address this issue, we are based on the unconstrained nonconvex relaxed minimization model for low-rank and sparse matrices recovery using low-rank matrix decomposition, and propose a novel efficient and effective solving algorithm in terms of direction matrices and step sizes alternating iteration in this paper. The three direction matrices are deduced using Newton method, Taylor expansion and so forth, and the appropriate step size of the direction sparse matrix is searched by the nonmonotonous step size linear search technique efficiently. In theory, we provide the convergence theorem of the proposed algorithm. Experimentally, its efficiency and effectiveness are illustrated under appropriate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://vision.ucsd.edu/content/extended-yale-face-database-b-b/

  2. http://backgroundmodelschallenge.eu/

  3. http://changedetection.net/

References

  • Armijo L (1966) Minimization of functions having Lipschitz continuous first partial derivatives. Pacific J Math 16(1):1–3

    Article  MathSciNet  MATH  Google Scholar 

  • Balcan MF, Liang Y, Song Z et al (2019) Non-convex matrix completion and related problems via strong duality. J Mach Learn Res 20(102):1–56

    MathSciNet  MATH  Google Scholar 

  • Bouwmans T, Sobral A, Javed S et al (2017) Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset. Comput Sci Rev 23:1–71

    Article  MATH  Google Scholar 

  • Candès EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58(3):1–37

    Article  MathSciNet  MATH  Google Scholar 

  • Chandrasekaran V, Sanghavi S, Parrilo P, Willsky A (2011) Rank-sparsity incoherence for matrix decomposition. SIAM J Optim 21(2):572–596

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Y, Wang Y, Li M et al (2017) Augmented Lagrangian alternating direction method for low-rank minimization via non-convex approximation. Signal Image Video Process 11(7):1271–1278

    Article  Google Scholar 

  • Dewester S, Dumains S, Landauer T, Furnas G, Harshman R (1990) Indexing by latent semantic analysis. J Soc Inform Sci 41(6):391–407

    Article  Google Scholar 

  • Du B, Huang Z, Wang N et al (2018) Joint weighted nuclear norm and total variation regularization for hyperspectral image denoising. Int J Remote Sens 39(2):334–355

    Article  Google Scholar 

  • Ebadi SE, Ones VG, Izquierdo E (2016) Dynamic tree-structured sparse RPCA via column subset selection for background modeling and foreground detection. In: 2016 IEEE International Conference on Image Processing (ICIP), pp 3972–3976

  • Fan H, Li C, Guo Y et al (2018) Spatial-spectral total variation regularized low-rank tensor decomposition for hyperspectral image denoising. IEEE Trans Geosci Remote Sens 56(10):6196–6213

    Article  Google Scholar 

  • Gao H, Cai JF, Shen ZW, Zhao HK (2011) Robust principal component analysis-based four-dimensional computed tomography. Phys Med Biol 56(11):3181

    Article  Google Scholar 

  • Georghiades Athinodoros S, Belhumeur Peter N, Kriegman David J (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mac Intell 23(6):643–660

    Article  Google Scholar 

  • Gillis N, Shitov Y (2019) Low-rank matrix approximation in the infinity norm. Linear Algebra Appl

  • Gong X, Chen W, Chen J (2020) A low-rank tensor dictionary learning method for hyperspectral image denoising. IEEE Trans Signal Process 68:1168–1180

    Article  MathSciNet  Google Scholar 

  • Grippo L, Lampariello F, Lucidi S (1986) A nonmonotone line search technique for Newton’s method. SIAM J Numer Anal 23(4):707–716

    Article  MathSciNet  MATH  Google Scholar 

  • Guo K, Liu L, Xu X et al (2018) GoDec+: fast and robust low-rank matrix decomposition based on maximum correntropy. IEEE Trans Neural Netw Learn Syst 29(6):2323–2336

    Article  MathSciNet  Google Scholar 

  • Guyon C, Bouwmans T, Zahzah EH (2012) Moving object detection by robust PCA solved via a linearized symmetric alternating direction method. Int Symp Vis Comput: 427-436

  • Javed S, Jung SK, Mahmood A, et al. (2016) Motion-aware graph regularized RPCA for background modeling of complex scenes. In: 2016 23rd International Conference on Pattern Recognition (ICPR). 120–125

  • Javed S, Mahmood A, Bouwmans T et al (2016) Spatiotemporal low-rank modeling for complex scene background initialization. IEEE Trans Circ Syst Video Technol 28(6):1315–1329

    Article  Google Scholar 

  • Javed S, Bouwmans T, Sultana M, Jung SK (2017) Moving object detection on RGB-D videos using graph regularized spatiotemporal RPCA. Int Conf Image Anal Process:230–241

  • Javed S, Narayanamurthy P, Bouwmans T, et al. (2018) Robust PCA and robust subspace tracking: a comparative evaluation. In: 2018 IEEE Statistical Signal Processing Workshop (SSP), pp 836–840

  • Lei Y, Xu D, Zhou Z (2018) A denoising algorithm for CT image using low-rank sparse coding: 2018 image processing. Int Soc Opt Photon 10574:05741P

    Google Scholar 

  • Li LY et al (2004) Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans Image Process 13(11):1459–1472

    Article  Google Scholar 

  • Li H, He X, Tao D et al (2018) Joint medical image fusion, denoising and enhancement via discriminative low-rank sparse dictionaries learning. Pattern Recogn 79:130–146

    Article  Google Scholar 

  • Li XP, Liu Q, So HC (2020) Rank-one matrix approximation with \(l_p\)-norm for image inpainting. IEEE Signal Process Lett 27:680–684

    Article  Google Scholar 

  • Li L, Li W, Du Q et al (2020) Low-rank and sparse decomposition with mixture of Gaussian for hyperspectral anomaly detection. IEEE Trans Cybern 51(9):4363–4372

    Article  Google Scholar 

  • Lin ZC, Ganesh A, Wright J, Wu L, Chen MM, Ma Y (2009) Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. In: Coordinated Science Laboratory Report no. UILU-ENG-09-2214, DC-246 (2009)

  • Lin ZC, Chen MM, Ma Y (2010) The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv: 1009.5055

  • Lin ZC, Liu RS, Su ZX (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. Adv Neural Inform Process Syst: 612–620

  • Liu Q, Li X (2021) Efficient low-rank matrix factorization based on \(l_{1, \epsilon }\)-norm for online background subtraction. IEEE Trans Circ Syst Video Technol

  • Liu Z, Vandenberghe L (2009) Interior-point method for nuclear norm approximation with application to system identification. SIAM J Matrix Anal Appl 31(3):1235–1256

    Article  MathSciNet  MATH  Google Scholar 

  • Liu GC, Lin ZC, Yu Y (2010) Robust subspace segmentation by low-rank representation. Int Conf Mach Learn 1:8

    Google Scholar 

  • Liu GC, Lin ZC, Yan SC, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Transa Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  • Liu Q, Li X, Yang J (2020) Optimum co-design for image denoising between type-2 fuzzy identifier and matrix completion denoiser. IEEE Trans Fuzzy Syst

  • Liu Q, Li X, P, Cao H, et al. (2021) From simulated to visual data: a robust low-rank tensor completion approach using \(l_p\)-regression for outlier resistance. IEEE Trans Circ Syst Video Technol

  • Moschoglou S, Ververas E, Panagakis Y et al (2018) Multi-attribute robust component analysis for facial uv maps. IEEE J Select Top Signal Process 12(6):1324–1337

    Article  Google Scholar 

  • Narayanamurthy P, Vaswani N (2018) A fast and memory-efficient algorithm for robust PCA (MEROP). In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4684–4688

  • Oh TH, Tai YW, Bazin JC et al (2016) Partial sum minimization of singular values in robust PCA: algorithm and applications. IEEE Trans Pattern Anal Mach Intell 38(4):744–758

    Article  Google Scholar 

  • Papadimitriou C, Rghavan P, Tamaki H, Vempala S (2000) Latent semantic indexing, a probabilistic analysis. J Comput Syst Scie 61(2):217–235

    Article  MathSciNet  MATH  Google Scholar 

  • Qian W, Cao F (2019) Adaptive algorithms for low-rank and sparse matrix recovery with truncated nuclear norm. Int J Mach Learn Cybern 10(6):1341–1355

    Article  Google Scholar 

  • Rodriguez P, Wohlberg B (2016) Incremental principal component pursuit for video background modeling. J Math Imaging Vis 55(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Sagheer SVM, George SN (2019) Denoising of low-dose CT images via low-rank tensor modeling and total variation regularization. Artif Intell Med 94:1–17

    Article  Google Scholar 

  • Shen Y, Wen Z, Zhang Y (2014) Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization. Optim Methods Softw 29(2):239–263

    Article  MathSciNet  MATH  Google Scholar 

  • Sobral A, Bouwmans T, ZahZah EH (2015) Double-constrained RPCA based on saliency maps for foreground detection in automated maritime surveillance. In: Advanced video and signal based surveillance. 2015 12th IEEE International Conference, pp 1–6

  • Sobral A, Bouwmans T, Zahzah E (2016) Lrslibrary: low-rank and sparse tools for background modeling and subtraction in videos. In: handbook of robust low-rank and sparse matrix decomposition: applications in image and video processing. CRC Press, Taylor and Francis Group

  • Sun L, Zhan T, Wu Z et al (2018) Hyperspectral mixed denoising via spectral difference-induced total variation and low-rank approximation. Remote Sens 10(12):1956

    Article  Google Scholar 

  • Vacavant A, Chateau T, Wilhelm A, et al. (2012) A benchmark dataset for outdoor foreground/background extraction. In: Asian Conference on Computer Vision. Springer, Berlin, Heidelberg, pp 291–300

  • Vaswani N, Bouwmans T, Javed S et al (2018) Robust subspace learning: robust PCA, robust subspace tracking, and robust subspace recovery. IEEE Signal Process Mag 35(4):32–55

    Article  Google Scholar 

  • Wang Y, Jodoin PM, Porikli F, et al. (2014) CDnet 2014: An expanded change detection benchmark dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp 387–394

  • Wang L, Wang B, Zhang Z et al (2019) Robust auto-weighted projective low-rank and sparse recovery for visual representation. Neural Netw 117:201–215

    Article  Google Scholar 

  • Wang H, Li Y, Cen Y et al (2019) Multi-matrices low-rank decomposition with structural smoothness for image denoising. IEEE Trans Circ Syst Video Technol 30(2):349–361

    Article  Google Scholar 

  • Wang Y, Wei H, Ding X et al (2020) Video background/foreground separation model based on non-convex rank approximation RPCA and superpixel motion detection. IEEE Access 8:157493–157503

    Article  Google Scholar 

  • Wang Z, Liu Y, Luo X, et al. (2021) Large-scale affine matrix rank minimization with a novel nonconvex regularizer. IEEE Trans Neural Netw Learn Syst

  • Wei W, Zhang L, Jiao Y et al (2018) Intracluster structured low-rank matrix analysis method for hyperspectral denoising. IEEE Trans Geosci Remote Sens 57(2):866–880

    Article  Google Scholar 

  • Wen F, Ying R, Liu P et al (2019) Nonconvex regularized robust PCA using the proximal block coordinate descent algorithm. IEEE Trans Signal Process 67(20):5402–5416

    Article  MathSciNet  MATH  Google Scholar 

  • Wright J, Ganesh A, Rao S, Peng Y, Ma Y (2009) Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Adv Neural Inform Process Syst. 2080-2088(2009)

  • Xiao YH, Wu SY, Li DH (2013) Splitting and linearizing augmented Lagrangian algorithm for subspace recovery from corrupted observations. Adv Comput Math 38(4):837–858

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao YH, Wu SY, Qi L (2014) Nonmonotone Barzilai-Borwein gradient algorithm for \(l_1\)-regularized nonsmooth minimization in compressive sensing. J Sci Comput 61:17–41

    Article  MathSciNet  MATH  Google Scholar 

  • Xin B, Tian Y, Wang Y, et al. (2015) Background subtraction via generalized fused lasso foreground modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 4676–4684

  • Xu H, Caramanis C, Sanghavi S (2010) Robust PCA via outlier pursuit. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems (NIPS) 10: 2496–2504

  • Xu W, Xia T, Jing C (2021) Background modeling from video sequences via online motion-aware RPCA. Comput Sci Inform Syst 00:29–29

    Google Scholar 

  • Xue Z, Dong J, Zhao Y et al (2019) Low-rank and sparse matrix decomposition via the truncated nuclear norm and a sparse regularizer. Vis Comput 35(11):1549–1566

    Article  Google Scholar 

  • Xue N, Deng J, Cheng S et al (2019) Side information for face completion: a robust PCA approach. IEEE Trans Pattern Anal Mach Intell 41(10):2349–2364

    Article  Google Scholar 

  • Yang L, Pong TK, Chen X (2015) Alternating direction method of multipliers for nonconvex background/foreground extraction 1(5): 5. arXiv preprint arXiv:1506.07029

  • Yang L, Pong TK, Chen X (2017) Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction. SIAM J Imaging Sci 10(1):74–110

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Z, Fan L, Yang Y et al (2019) Generalized singular value thresholding operator based nonconvex low-rank and sparse decomposition for moving object detection. J Franklin Inst 356(16):10138–10154

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang HY, Lin ZC, Zhang C, Gao JB (2015) Relations among some low-rank subspace recovery models. Neural Comput 27(9):1915–1950

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Wang L, Gu Q (2017) A nonconvex free lunch for low-rank plus sparse matrix recovery. arXiv preprint arXiv:1702.06525

  • Zhang H, Liu L, He W et al (2019) Hyperspectral image denoising with total variation regularization and nonlocal low-rank tensor decomposition. IEEE Trans Geosci Remote Sens 58(5):3071–3084

    Article  Google Scholar 

  • Zhao JX, Zhao LN (2020) Low-rank and sparse matrices fitting algorithm for low-rank representation. Comput Math Appl 79(2):407–425

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao JX, Feng Q, Zhao LN (2019) Alternating direction and Taylor expansion minimization algorithms for unconstrained nuclear norm optimization. Numer Algorithms 82(1):371–396

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng A, Zou T, Zhao Y et al (2019) Background subtraction with multi-scale structured low-rank and sparse factorization. Neurocomputing 328:113–121

    Article  Google Scholar 

  • Zhou T, Tao D (2013) Greedy bilateral sketch, completion and smoothing. Artif Intell Stat PMLR, pp 650–658

  • Zhu L, Jiang X, Li J et al (2020) Motion-aware structured matrix factorization for foreground detection in complex scenes. ACM Trans Multimed Comput Commun Appl (TOMM) 16(4):1–23

    Google Scholar 

Download references

Acknowledgements

The author would like to thank General Project of Science and Technology Plan of Beijing Municipal Commission of Education (Grant KM202011232018), Key Research and Cultivation Project of Scientific Research on Campus of Beijing Information Science and Technology University (Grant 2021YJPY236) and the reviewers for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxi Zhao.

Additional information

Communicated by Antonio José Silva Neto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J. A novel low-rank matrix approximation algorithm for face denoising and background/foreground separation. Comp. Appl. Math. 41, 165 (2022). https://doi.org/10.1007/s40314-022-01871-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01871-w

Keywords

Mathematics Subject Classification