Abstract
5G cellular networks are expected to be the key infrastructure to deliver the emerging services. These services bring new requirements and challenges that obstruct the desired goal of forthcoming networks. Mobile operators are rethinking their network design to provide more flexible, dynamic, cost-effective and intelligent solutions. This paper starts with describing the background of the 5G wireless networks then we give a deep insight into a set of 5G challenges and research opportunities for machine learning (ML) techniques to manage these challenges. The first part of the paper is devoted to overview the fifth-generation of cellular networks, explaining its requirements as well as its key technologies, their challenges and its forthcoming architecture. The second part is devoted to present a basic overview of ML techniques that are nowadays applied to cellular networks. The last part discusses the most important related works which propose ML solutions in order to overcome 5G challenges.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
A backhaul network is an intermediary that enables the data transmission and reception between core networks, or macro base station and small base stations. It can be a wired or wireless link.
References
Monserrat JF, Mange G, Braun V, Tullberg H, Zimmermann G, Bulakci Ö (2015) Metis research advances towards the 5G mobile and wireless system definition. EURASIP J Wirel Commun Netw 2015(1):53
Al-Falahy N, Alani OY (2017) Technologies for 5G networks: challenges and opportunities. IT Prof 19(1):12–20
Onoe S (2016) 1.3 evolution of 5G mobile technology toward 1 2020 and beyond. In: 2016 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 23–28
Valente KP, Imran MA, Onireti O, Souza RD (2017) A survey of machine learning techniques applied to self organizing cellular networks. IEEE Commun Surv Tutor 19:2392–2431
Intelligence G (2014) Understanding 5G: perspectives on future technological advancements in mobile. White paper, pp 1–26
Agiwal M, Roy A, Saxena N (2016) Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Surv Tutor 18(3):1617–1655
Talwar S, Choudhury D, Dimou K, Aryafar E, Bangerter B, Stewart K (2014) Enabling technologies and architectures for 5G wireless. In: 2014 IEEE MTT-S international microwave symposium (IMS2014). IEEE, pp 1–4
Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong AC, Zhang JC (2014) What will 5G be? IEEE J Sel Areas Commun 32(6):1065–1082
Osseiran A, Boccardi F, Braun V, Kusume K, Marsch P, Maternia M, Queseth O, Schellmann M, Schotten H, Taoka H et al (2014) Scenarios for 5G mobile and wireless communications: the vision of the metis project. IEEE Commun Mag 52(5):26–35
Li QC, Niu H, Papathanassiou AT, Wu G (2014) 5G network capacity: key elements and technologies. IEEE Veh Technol Mag 9(1):71–78
Hossain E, Hasan M (2015) 5G cellular: key enabling technologies and research challenges. IEEE Instrum Meas Mag 18(3):11–21
Papadopoulos H, Wang C, Bursalioglu O, Hou X, Kishiyama Y (2016) Massive mimo technologies and challenges towards 5G. IEICE Trans Commun 99(3):602–621
Larsson EG, Edfors O, Tufvesson F, Marzetta TL (2014) Massive mimo for next generation wireless systems. IEEE Commun Mag 52(2):186–195
Zhang Y, Yu R, Nekovee M, Liu Y, Xie S, Gjessing S (2012) Cognitive machine-to-machine communications: visions and potentials for the smart grid. IEEE Netw 26(3):6–13
Goudar SI, Hassan S, Habbal A (2017) 5G: The next wave of digital society challenges and current trends, Journal of Telecommunication. Electron Comput Eng (JTEC) 9(1–2):63–66
Alnoman A, Anpalagan A (2017) Towards the fulfillment of 5G network requirements: technologies and challenges. Telecommun Syst 65(1):101–116
Wu G, Yang C, Li S, Li GY (2015) Recent advances in energy-efficient networks and their application in 5G systems. IEEE Wirel Commun 22(2):145–151
Mell P, Grance T et al (2011) The nist definition of cloud computing
Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research challenges. J Internet Serv Appl 1(1):7–18
Nguyen V-G, Brunstrom A, Grinnemo K-J, Taheri J (2017) Sdn/nfv-based mobile packet core network architectures: a survey. IEEE Commun Surv Tutor 19(3):1567–1602
Abdelwahab S, Hamdaoui B, Guizani M, Znati T (2016) Network function virtualization in 5G. IEEE Commun Mag 54(4):84–91
Rangan S, Rappaport TS, Erkip E (2014) Millimeter wave cellular wireless networks: potentials and challenges. arXiv preprint arXiv:1401.2560
Ma Z, Zhang Z, Ding Z, Fan P, Li H (2015) Key techniques for 5G wireless communications: network architecture, physical layer, and mac layer perspectives. Sci China Inf Sci 58(4):1–20
Zheng G (2015) Joint beamforming optimization and power control for full-duplex mimo two-way relay channel. IEEE Trans Signal Process 63(3):555–566
Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile edge computing: the communication perspective. IEEE Commun Surv Tutor 19(4):2322–2358
Wang S, Zhang X, Zhang Y, Wang L, Yang J, Wang W (2017) A survey on mobile edge networks: convergence of computing, caching and communications. IEEE Access 5:6757–6779
Letaief KB, Chen W, Shi Y, Zhang J, Zhang Y-JA (2019) The roadmap to 6g-AI empowered wireless networks. arXiv preprint arXiv:1904.11686
Arfaoui G, Vilchez JMS, Wary J-P (2017) Security and resilience in 5G: current challenges and future directions. In: 2017 IEEE Trustcom/BigDataSE/ICESS. IEEE, pp 1010–1015
Klautau A, Batista P, Prelcic N, Wang Y, Heath R (2016) 5G mimo data for machine learning: application to beam-selection using deep learning. In: 2018 proceedings of information theory and applications workshop (ITA), pp 1–9
Kafle VP, Fukushima Y, Martinez-Julia P, Miyazawa T (2018) Consideration on automation of 5G network slicing with machine learning. In: 2018 ITU Kaleidoscope: machine learning for a 5G future (ITU K). IEEE, pp 1–8
International Telecommunication Union (ITU) (2017) Focus Group on Machine Learning for Future Networks including 5G (FG-ML5G). https://www.itu.int/en/ITU-T/focusgroups/ml5g/Pages/default.aspx. Accessed Nov 2017
5G Public Private Partnership (5G-PPP) (2015) CogNet-building an intelligent system of insights and action for 5G network management. http://www.cognet.5g-ppp.eu/. Accessed 1 July 2015
Wang X, Li X, Leung VC (2015) Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts, opportunities, and challenges. IEEE Access 3:1379–1391
Kibria MG, Nguyen K, Villardi GP, Zhao O, Ishizu K, Kojima F (2018) Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. IEEE Access 6:32328–32338
Long F, Li N, Wang Y (2017) Autonomic mobile networks: the use of artificial intelligence in wireless communications. In: 2017 2nd international conference on advanced robotics and mechatronics (ICARM). IEEE, pp 582–586
Moysen J, Giupponi L (2018) From 4G to 5G: self-organized network management meets machine learning. Comput Commun 129:248–268
Pérez-Romero J, Sánchez-González J, Sallent O, Agustí R (2016) On learning and exploiting time domain traffic patterns in cellular radio access networks. In: International conference on machine learning and data mining in pattern recognition. Springer, pp 501–515
Alsharif MH, Nordin R (2017) Evolution towards fifth generation (5G) wireless networks: current trends and challenges in the deployment of millimetre wave, massive mimo, and small cells. Telecommun Syst 64(4):617–637
Li S, Da Xu L, Zhao S (2018) 5G internet of things: a survey. J Ind Inf Integr 10:1–9
Kazi BU, Wainer GA (2019) Next generation wireless cellular networks: ultra-dense multi-tier and multi-cell cooperation perspective. Wirel Netw 25(4):2041–2064
Gupta A, Jha RK (2015) A survey of 5G network: architecture and emerging technologies. IEEE Access 3:1206–1232
Marsch P, Da Silva I, Bulakci O, Tesanovic M, El Ayoubi SE, Rosowski T, Kaloxylos A, Boldi M (2016) 5G radio access network architecture: design guidelines and key considerations. IEEE Commun Mag 54(11):24–32
Elijah O, Leow CY, Rahman TA, Nunoo S, Iliya SZ (2016) A comprehensive survey of pilot contamination in massive mimo-5G system. IEEE Commun Surv Tutor 18(2):905–923
Ahmed I, Khammari H, Shahid A, Musa A, Kim KS, De Poorter E, Moerman I (2018) A survey on hybrid beamforming techniques in 5G: architecture and system model perspectives. IEEE Commun Surv Tutor 20(3060):3097
Chin WH, Fan Z, Haines R (2014) Emerging technologies and research challenges for 5G wireless networks. IEEE Wirel Commun 21(2):106–112
Zhang C, Patras P, Haddadi H (2019) Deep learning in mobile and wireless networking: a survey. IEEE Commun Surv Tutor 21:2224–2287
Zhu G, Zan J, Yang Y, Qi X (2019) A supervised learning based qos assurance architecture for 5G networks. IEEE Access 7:43598–43606
Jiang C, Zhang H, Ren Y, Han Z, Chen K-C, Hanzo L (2017) Machine learning paradigms for next-generation wireless networks. IEEE Wirel Commun 24(2):98–105
Javaid N, Sher A, Nasir H, Guizani N (2018) Intelligence in iot-based 5G networks: opportunities and challenges. IEEE Commun Mag 56(10):94–100
Li R, Zhao Z, Zhou X, Ding G, Chen Y, Wang Z, Zhang H (2017) Intelligent 5G: when cellular networks meet artificial intelligence. IEEE Wirel Commun 24(5):175–183
Zhang J (2016) The interdisciplinary research of big data and wireless channel: a cluster-nuclei based channel model. China Commun 13(Supplement 2):14–26
Bogale TE, Wang X, Le LB (2018) Machine intelligence techniques for next-generation context-aware wireless networks. arXiv preprint arXiv:1801.04223
Latif S, Qadir J, Farooq S, Imran MA (2017) How 5G wireless (and concomitant technologies) will revolutionize healthcare? Future Internet 9(4):93
Qadir J, Yau K-LA, Imran MA, Ni Q, Vasilakos AV (2015) Ieee access special section editorial: Artificial intelligence enabled networking. IEEE Access 3:3079–3082
Chen M, Challita U, Saad W, Yin C, Debbah M (2017) Machine learning for wireless networks with artificial intelligence: a tutorial on neural networks. arXiv preprint arXiv:1710.02913
Salahuddin MA, Al-Fuqaha A, Guizani M (2016) Reinforcement learning for resource provisioning in the vehicular cloud. IEEE Wirel Commun 23(4):128–135
Latif S, Pervez F, Usama M, Qadir J (2017) Artificial intelligence as an enabler for cognitive self-organizing future networks. arXiv preprint arXiv:1702.02823
Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178
Fadlullah Z, Tang F, Mao B, Kato N, Akashi O, Inoue T, Mizutani K (2017) State-of-the-art deep learning: evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun Surv Tutor 19(4):2432–2455
Bui N, Cesana M, Hosseini SA, Liao Q, Malanchini I, Widmer J (2017) A survey of anticipatory mobile networking: context-based classification, prediction methodologies, and optimization techniques. IEEE Commun Surv Tutor 19(3):1790–1821
Le NT, Hossain MA, Islam A, Kim D-Y, Choi Y-J, Jang YM (2016) Survey of promising technologies for 5G networks. Mob Inf Syst 2016:2676589
Boutaba R, Salahuddin MA, Limam N, Ayoubi S, Shahriar N, Estrada-Solano F, Caicedo OM (2018) A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J Internet Serv Appl 9(1):16
Sultan K, Ali H, Zhang Z (2018) Big data perspective and challenges in next generation networks. Future Internet 10(7):56
Xie J, Song Z, Li Y, Zhang Y, Yu H, Zhan J, Ma Z, Qiao Y, Zhang J, Guo J (2018) A survey on machine learning-based mobile big data analysis: challenges and applications. Wirel Commun Mob Comput 2018:8738613
Xie J, Song Z, Li Y, Ma Z (2018) Mobile big data analysis with machine learning. arXiv preprint arXiv:1808.00803
Buda TS, Assem H, Xu L, Raz D, Margolin U, Rosensweig E, Lopez DR, Corici M-I, Smirnov M, Mullins R et al (2016) Can machine learning aid in delivering new use cases and scenarios in 5G? In: NOMS 2016–2016 IEEE/IFIP network operations and management symposium. IEEE, pp 1279–1284
Wang Y, Xu J, Jiang L (2014) Challenges of system-level simulations and performance evaluation for 5G wireless networks. IEEE Access 2:1553–1561
Yao M, Sohul M, Marojevic V, Reed JH (2019) Artificial intelligence defined 5G radio access networks. IEEE Commun Mag 57(3):14–20
Boccardi F, Heath RW, Lozano A, Marzetta TL, Popovski P (2014) Five disruptive technology directions for 5G. IEEE Commun Mag 52(2):74–80
Razavizadeh SM, Ahn M, Lee I (2014) Three-dimensional beamforming: a new enabling technology for 5G wireless networks. IEEE Signal Process Mag 31(6):94–101
Farhang-Boroujeny B, Moradi H (2016) Ofdm inspired waveforms for 5G. IEEE Commun Surv Tutor 18(4):2474–2492
Mitra RN, Agrawal DP (2015) 5G mobile technology: a survey. ICT Express 1(3):132–137
Wunder G, Jung P, Kasparick M, Wild T, Schaich F, Chen Y, Ten Brink S, Gaspar I, Michailow N, Festag A et al (2014) 5Gnow: non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun Mag 52(2):97–105
Schaich F, Wild T (2014) Waveform contenders for 5G–OFDM vs. FBMC vs. UFMC. In: 2014 6th international symposium on communications, control and signal processing (ISCCSP). IEEE, pp 457–460
van der Neut N, Maharaj B, de Lange FH, Gonzalez G, Gregorio F, Cousseau J (2014) PAPR reduction in FBMC systems using a smart gradient-project active constellation extension method. In: 2014 21st international conference on telecommunications (ICT). IEEE, pp 134–139
Danneberg M, Datta R, Festag A, Fettweis G (2014) Experimental testbed for 5G cognitive radio access in 4G LTE cellular systems. In: 2014 IEEE 8th sensor array and multichannel signal processing workshop (SAM). IEEE, pp 321–324
Fettweis GP, Krondorf M, Bittner S (2009) GFDM-generalized frequency division multiplexing. In: VTC. Spring, pp 1–4
Mukherjee M, Shu L, Kumar V, Kumar P, Matam R (2015) Reduced out-of-band radiation-based filter optimization for UFMC systems in 5G. In: 2015 international wireless communications and mobile computing conference (IWCMC). IEEE, pp 1150–1155
Song L, Niyato D, Han Z, Hossain E (2015) Wireless device-to-device communications and networks. Cambridge University Press, Cambridge
Mumtaz S, Huq KMS, Rodriguez J (2014) Direct mobile-to-mobile communication: paradigm for 5G. IEEE Wirel Commun 21(5):14–23
Fortuna C, Mohorcic M (2009) Trends in the development of communication networks: cognitive networks. Comput Netw 53(9):1354–1376
Aliu OG, Imran A, Imran MA, Evans B (2013) A survey of self organisation in future cellular networks. IEEE Commun Surv Tutor 15(1):336–361
Zhang N, Cheng N, Gamage AT, Zhang K, Mark JW, Shen X (2015) Cloud assisted hetnets toward 5G wireless networks. IEEE Commun Mag 53(6):59–65
Liu Y, She X, Chen P, Zhu J, Yang F (2015) Easy network: the way to go for 5G. China Commun 12(Supplement):113–120
Feng Z, Qiu C, Feng Z, Wei Z, Li W, Zhang P (2015) An effective approach to 5G: wireless network virtualization. IEEE Commun Mag 53(12):53–59
Chowdhury NMK, Boutaba R (2009) Network virtualization: state of the art and research challenges. IEEE Commun Mag 47(7):20–26
Han B, Gopalakrishnan V, Ji L, Lee S (2015) Network function virtualization: challenges and opportunities for innovations. IEEE Commun Mag 53(2):90–97
Hawilo H, Shami A, Mirahmadi M, Asal R (2014) Nfv: state of the art, challenges and implementation in next generation mobile networks (vepc). arXiv preprint arXiv:1409.4149
Open Networking Foundation (ONF) (2014) OpenFlow-enabled SDN and Network Functions Virtualization. https://www.opennetworking.org/wp-content/uploads/2013/05/sb-sdn-nvf-solution.pdf. Accessed 17 Feb 2014
Yousaf FZ, Bredel M, Schaller S, Schneider F (2017) Nfv and sdn-key technology enablers for 5G networks. IEEE J Sel Areas Commun 35(11):2468–2478
Rangisetti AK, Tamma BR (2017) Software defined wireless networks: a survey of issues and solutions. Wirel Pers Commun 97(4):6019–6053
Goyal S, Liu P, Panwar SS, Difazio RA, Yang R, Bala E et al (2015) Full duplex cellular systems: will doubling interference prevent doubling capacity? IEEE Commun Mag 53(5):121–127
Hong S, Brand J, Choi JI, Jain M, Mehlman J, Katti S, Levis P (2014) Applications of self-interference cancellation in 5G and beyond. IEEE Commun Mag 52(2):114–121
Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing—a key technology towards 5G. ETSI White Pap 11(11):1–16
Xiao L, Wan X, Dai C, Du X, Chen X, Guizani M (2018) Security in mobile edge caching with reinforcement learning. arXiv preprint arXiv:1801.05915
Ordonez-Lucena J, Ameigeiras P, Lopez D, Ramos-Munoz JJ, Lorca J, Folgueira J (2017) Network slicing for 5G with sdn/nfv: concepts, architectures, and challenges. IEEE Commun Mag 55(5):80–87
Soleymani B, Zamani A, Rastegar SH, Shah-Mansouri V (2017) RAT selection based on association probability in 5G heterogeneous networks. In: IEEE symposium on communications and vehicular technology (SCVT), pp 1–6
Pérez JS, Jayaweera SK, Lane S (2017) Machine learning aided cognitive RAT selection for 5G heterogeneous networks. In: IEEE international black sea conference on communications and networking (BlackSeaCom), Istanbul, Turkey. IEEE, pp 1–5
Nadeem Q-U-A, Kammoun A, Alouini M-S (2018) Elevation beamforming with full dimension mimo architectures in 5G systems: a tutorial. arXiv preprint arXiv:1805.00225
Wei L, Hu RQ, Qian Y, Wu G (2014) Enable device-to-device communications underlaying cellular networks: challenges and research aspects. IEEE Commun Mag 52(6):90–96
Li Y, Wu T, Hui P, Jin D, Chen S (2014) Social-aware d2d communications: Qualitative insights and quantitative analysis. IEEE Commun Mag 52(6):150–158
Maimó LF, Clemente FJG, Pérez MG, Pérez GM (2017) On the performance of a deep learning-based anomaly detection system for 5G networks. In: 2017 IEEE SmartWorld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, pp 1–8
Bouras C, Kollia A, Papazois A (2017) SDN & NFV in 5G: advancements and challenges. In: 2017 20th conference on innovations in clouds, internet and networks (ICIN). IEEE, pp 107–111
Sun S, Gong L, Rong B, Lu K (2015) An intelligent sdn framework for 5G heterogeneous networks. IEEE Commun Mag 53(11):142–147
Chih-Lin I, Han S, Xu Z, Sun Q, Pan Z (2016) 5G: rethink mobile communications for 2020+. Philos Trans R Soc A Math Phys Eng Sci 374(2062):20140432
MacCartney GR, Zhang J, Nie S, Rappaport TS (2013) Path loss models for 5G millimeter wave propagation channels in urban microcells. In: 2013 IEEE global communications conference (GLOBECOM), pp 3948–3953
Shafi M, Molisch AF, Smith PJ, Haustein T, Zhu P, De Silva P, Tufvesson F, Benjebbour A, Wunder G (2017) 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J Sel Areas Commun 35(6):1201–1221
You X, Zhang C, Tan X, Jin S, Wu H (2019) Ai for 5G: research directions and paradigms. Sci China Inf Sci 62(2):21301
Shariatmadari H, Ratasuk R, Iraji S, Laya A, Taleb T, Jäntti R, Ghosh A (2015) Machine-type communications: current status and future perspectives toward 5G systems. IEEE Commun Mag 53(9):10–17
Tullberg H, Popovski P, Li Z, Uusitalo MA, Hoglund A, Bulakci O, Fallgren M, Monserrat JF (2016) The metis 5G system concept: meeting the 5G requirements. IEEE Commun Mag 54(12):132–139
Queseth O, Bulakci Ö, Spapis P, Bisson P, Marsch P, Arnold P, Rost P, Wang Q, Blom R, Salsano S, et al (2017) 5G ppp architecture working group: view on 5G architecture (version 2.0, December 2017)
Nawaz SJ, Sharma SK, Wyne S, Patwary MN, Asaduzzaman M (2019) Quantum machine learning for 6g communication networks: state-of-the-art and vision for the future. IEEE Access 7:46317–46350
Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (iot): a vision, architectural elements, and future directions. Future Gener Comput Syst 29(7):1645–1660
Alliance N (2015) 5G white paper, Next generation mobile networks, white paper, pp 1–125
Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Context aware computing for the internet of things: a survey. IEEE Commun Surv Tutor 16(1):414–454
Fortino G, Guerrieri A, Russo W, Savaglio C (2014) Integration of agent-based and cloud computing for the smart objects-oriented IoT. In: Proceedings of the 2014 IEEE 18th international conference on computer supported cooperative work in design (CSCWD). IEEE, pp 493–498
Wang D, Chen D, Song B, Guizani N, Yu X, Du X (2018) From iot to 5G i-iot: the next generation iot-based intelligent algorithms and 5G technologies. IEEE Commun Mag 56(10):114–120
Ratasuk R, Prasad A, Li Z, Ghosh A, Uusitalo MA (2015) Recent advancements in M2M communications in 4G networks and evolution towards 5G. In: 2015 18th international conference on intelligence in next generation networks. IEEE, pp 52–57
Kumar N, Misra S, Rodrigues JJ, Obaidat MS (2015) Coalition games for spatio-temporal big data in internet of vehicles environment: a comparative analysis. IEEE Internet Things J 2(4):310–320
Lee JD, Caven B, Haake S, Brown TL (2001) Speech-based interaction with in-vehicle computers: the effect of speech-based e-mail on drivers’ attention to the roadway. Hum Factors 43(4):631–640
Oleshchuk V, Fensli R (2011) Remote patient monitoring within a future 5G infrastructure. Wirel Pers Commun 57(3):431–439
West DM (2016) How 5G technology enables the health internet of things. Brook Cent Technol Innov 3:1–20
Gungor VC, Sahin D, Kocak T, Ergut S, Buccella C, Cecati C, Hancke GP (2011) Smart grid technologies: communication technologies and standards. IEEE Trans Ind Inform 7(4):529–539
Jeong S, Jeong Y, Lee K, Lee S, Yoon B (2016) Technology-based new service idea generation for smart spaces: application of 5G mobile communication technology. Sustainability 8(11):1211
Rappaport TS, Sun S, Mayzus R, Zhao H, Azar Y, Wang K, Wong GN, Schulz JK, Samimi M, Gutierrez F (2013) Millimeter wave mobile communications for 5G cellular: it will work!. IEEE access 1:335–349
Simsek M, Aijaz A, Dohler M, Sachs J, Fettweis G (2016) 5G-enabled tactile internet. IEEE J Sel Areas Commun 34(3):460–473
Aijaz A, Dohler M, Aghvami AH, Friderikos V, Frodigh M (2016) Realizing the tactile internet: haptic communications over next generation 5G cellular networks. IEEE Wirel Commun 24(2):82–89
Popovski P (2014) Ultra-reliable communication in 5G wireless systems. In: 1st international conference on 5G for ubiquitous connectivity. IEEE, pp 146–151
Hossain E, Rasti M, Tabassum H, Abdelnasser A (2014) Evolution towards 5G multi-tier cellular wireless networks: an interference management perspective. arXiv preprint arXiv:1401.5530
Wang C-X, Haider F, Gao X, You X-H, Yang Y, Yuan D, Aggoune HM, Haas H, Fletcher S, Hepsaydir E (2014) Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag 52(2):122–130
Zhang H, Jiang C, Beaulieu NC, Chu X, Wen X, Tao M (2014) Resource allocation in spectrum-sharing of dma femtocells with heterogeneous services. IEEE Trans Commun 62(7):2366–2377
Hao P, Yan X, Yu-Ngok R, Yuan Y (2016) Ultra dense network: challenges enabling technologies and new trends. China Commun 13(2):30–40
Ge X, Tu S, Mao G, Wang C-X, Han T (2015) 5G ultra-dense cellular networks. arXiv preprint arXiv:1512.03143
Grover J, Garimella RM (2019) Optimization in edge computing and small-cell networks. In: Edge computing. Springer, pp 17–31
Hong X, Wang J, Wang C-X, Shi J (2014) Cognitive radio in 5G: a perspective on energy-spectral efficiency trade-off. IEEE Commun Mag 52(7):46–53
ETSIV (2011) Machine-to-machine communications (m2m): functional architecture. Int Telecommun 102:690 (Union, Geneva, Switzerland, Tech. Rep. TS)
Mehmood Y, Haider N, Imran M, Timm-Giel A, Guizani M (2017) M2m communications in 5G: state-of-the-art architecture, recent advances, and research challenges. IEEE Commun Mag 55(9):194–201
Mehmood Y, Görg C, Muehleisen M, Timm-Giel A (2015) Mobile m2m communication architectures, upcoming challenges, applications, and future directions. EURASIP J Wirel Commun Netw 2015(1):250
Roh W, Seol J-Y, Park J, Lee B, Lee J, Kim Y, Cho J, Cheun K, Aryanfar F (2014) Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag 52(2):106–113
Zhang J, Ge X, Li Q, Guizani M, Zhang Y (2017) 5G millimeter-wave antenna array: design and challenges. IEEE Wirel Commun 24(2):106–112
Checko A, Christiansen HL, Yan Y, Scolari L, Kardaras G, Berger MS, Dittmann L (2014) Cloud ran for mobile networks—a technology overview. IEEE Commun Surv Tutor 17(1):405–426
Checko A, Christiansen HL, Yan Y, Scolari L, Kardaras G, Berger MS, Dittmann L (2015) Cloud ran for mobile networks—a technology overview. IEEE Commun Surv Tutor 17(1):405–426
Zhang H, Jiang C, Cheng J, Leung VC (2015) Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wirel Commun 22(3):92–99
Rost P, Bernardos CJ, De Domenico A, Di Girolamo M, Lalam M, Maeder A, Sabella D, Wübben D (2014) Cloud technologies for flexible 5G radio access networks. IEEE Commun Mag 52(5):68–76
Pan C, Elkashlan M, Wang J, Yuan J, Hanzo L (2018) User-centric c-ran architecture for ultra-dense 5G networks: challenges and methodologies. IEEE Commun Mag 56(6):14–20
ETSI-European Telecommunications Standards Institute (2019) 5G; system architecture for the 5G System (5GS)(3GPP TS 23.501 version 15.5.0 Release 15). https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.05.00_60/ts_123501v150500p.pdf. Accessed Apr 2019
The 5G Infraestructure Public Private Partnership (2019) 5G Americas White Paper The Status of Open Source for 5G. http://www.5gamericas.org/files 6915/5070/2509/5G_Americas_White_Paper_The_Status_of_Open_Source_for_5G_Feb_2018.pdf. Accessed Feb 2019
ETSI-European Telecommunications Standards Institute (2018) 5G; system architecture for the 5G system (3GPP TS 23.501 version 15.2.0 Release 15). https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.02.00_60/ts_123501v150200p.pdf. Accessed June 2018
Wu D, Wang J, Cai Y, Guizani M (2015) Millimeter-wave multimedia communications: challenges, methodology, and applications. IEEE Commun Mag 53(1):232–238
Comsa I-S, De-Domenico A, Ktenas D (2017) Qos-driven scheduling in 5G radio access networks-a reinforcement learning approach. In: GLOBECOM 2017-2017 IEEE global communications conference. IEEE, pp 1–7
Comşa I-S, Zhang S, Aydin M, Kuonen P, Lu Y, Trestian R, Ghinea G (2018) Towards 5G: a reinforcement learning-based scheduling solution for data traffic management. IEEE Trans Netw Serv Manag 15:1661–1675
Kamel A, Al-Fuqaha A, Guizani M (2014) Exploiting client-side collected measurements to perform QoS assessment of IaaS. IEEE Trans Mobile Comput 14(9):1876–1887
International Telecommunication Union (2017) Vocabulary for performance, quality of service and quality of experience . https://www.itu.int/rec/T-REC-P.10-201711-I. Accessed 13 Nov 2017
European Cooperation in Science and Technology, QoE definition, http://www.cost.eu
International Telecommunication Union, Reference guide to quality of experience assessment methodologies. https://www.itu.int/rec/T-REC-G.1011-201607-I/en
Chen Y, Wu K, Zhang Q (2014) From qos to qoe: a tutorial on video quality assessment. IEEE Commun Surv Tutori 17(2):1126–1165
Qiao J, Shen XS, Mark JW, Shen Q, He Y, Lei L (2015) Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Commun Mag 53(1):209–215
Pierucci L (2015) The quality of experience perspective toward 5G technology. IEEE Wirel Commun 22(4):10–16
Petrangeli S, Wu T, Wauters T, Huysegems R, Bostoen T, De Turck F (2017) A machine learning-based framework for preventing video freezes in http adaptive streaming. J Netw Comput Appl 94:78–92
Imran A, Zoha A, Abu-Dayya A (2014) Challenges in 5G: how to empower son with big data for enabling 5G. IEEE Netw 28(6):27–33
Wu J, Zhang Y, Zukerman M, Yung EK-N (2015) Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey. IEEE Commun Surv Tutor 17(2):803–826
Jaber M, Imran MA, Tafazolli R, Tukmanov A (2017) Energy-efficient SON-based user-centric backhaul scheme. In: 2017 IEEE wireless communications and networking conference workshops (WCNCW). IEEE, pp 1–6
Jaber M, Imran MA, Tafazolli R, Tukmanov A (2016) A distributed son-based user-centric backhaul provisioning scheme. IEEE Access 4:2314–2330
Jaber M, Imran MA, Tafazolli R, Tukmanov A (2016) A multiple attribute user-centric backhaul provisioning scheme using distributed SON. In: 2016 IEEE global communications conference (GLOBECOM). IEEE, pp 1–6
Morocho-Cayamcela ME, Lee H, Lim W (2019) Machine learning for 5G/b5G mobile and wireless communications: potential, limitations, and future directions. IEEE Access 7:137184–137206
Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52
Comon P (1994) Independent component analysis, a new concept? Signal Process 36(3):287–314
Yuan Y, Wan J, Wang Q (2016) Congested scene classification via efficient unsupervised feature learning and density estimation. Pattern Recognit 56:159–169
Amiri R, Mehrpouyan H, Fridman L, Mallik RK, Nallanathan A, Matolak D (2018) A machine learning approach for power allocation in hetnets considering qos. arXiv preprint arXiv:1803.06760
Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double q-learning. In: AAAI, vol 2. Phoenix, AZ
Wang S, Chaovalitwongse W, Babuska R (2012) Machine learning algorithms in bipedal robot control. IEEE Tran Syst Man Cybern Part C (Appl Revs) 42(5):728–743
Baştuğ E, Bennis M, Debbah M (2015) A transfer learning approach for cache-enabled wireless networks. In: 2015 13th international symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt). IEEE, pp 161–166
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436
Muthuramalingam S, Thangavel M, Sridhar S (2016) A review on digital sphere threats and vulnerabilities. In: Combating security breaches and criminal activity in the digital sphere. IGI Global, pp 1–21
Mohr W (2015) The 5G infrastructure public-private partnership. In: Presentation in ITU GSC-19 meeting
Li J, Zhao Z, Li R (2017) Machine learning-based ids for software-defined 5G network. IET Netw 7(2):53–60
Fiore U, Palmieri F, Castiglione A, De Santis A (2013) Network anomaly detection with the restricted Boltzmann machine. Neurocomputing 122:13–23
Maimó LF, Gómez ÁLP, Clemente FJG, Pérez MG, Pérez GM (2018) A self-adaptive deep learning-based system for anomaly detection in 5G networks. IEEE Access 6:7700–7712
Garcia S, Grill M, Stiborek J, Zunino A (2014) An empirical comparison of botnet detection methods. Comput Secur 45:100–123
Zago M, Sánchez VMR, Pérez MG, Pérez GM (2016) Tackling cyber threats with automatic decisions and reactions based on machine-learning techniques. In: Proceedings of the 2nd conference on network management, quality of service and security for 5G networks, Oulu, Finland, pp 1–4
Chang Z, Lei L, Zhou Z, Mao S, Ristaniemi T (2018) Learn to cache: machine learning for network edge caching in the big data era. IEEE Wirel Commun 25(3):28–35
Baldo N, Giupponi L, Mangues-Bafalluy J (2014) Big data empowered self organized networks. In: European wireless 2014; 20th European wireless conference. VDE, pp 1–8
Srinivasa S, Bhatnagar V (2012) Big data analytics: first international conference, BDA 2012, New Delhi, India, December 24-26, 2012, Proceedings, vol 7678. Springer Science & Business Media
Parwez MS, Rawat DB, Garuba M (2017) Big data analytics for user-activity analysis and user-anomaly detection in mobile wireless network. IEEE Trans Ind Inform 13(4):2058–2065
Aref MA, Jayaweera SK, Machuzak S (2017) Multi-agent reinforcement learning based cognitive anti-jamming. In: 2017 IEEE wireless communications and networking conference (WCNC). IEEE, pp 1–6
Mulvey D, Foh CH, Imran MA, Tafazolli R (2019) Cell fault management using machine learning techniques. IEEE Access 7:124514–124539
Kumar Y, Farooq H, Imran A (2017) Fault prediction and reliability analysis in a real cellular network. In: 2017 13th international wireless communications and mobile computing conference (IWCMC). IEEE, pp 1090–1095
Mfula H, Nurminen JK (2017) Adaptive root cause analysis for self-healing in 5G networks. In: 2017 international conference on high performance computing & simulation (HPCS). IEEE, pp 136–143
Mismar FB, Evans BL (2018) Deep Q-learning for self-organizing networks fault management and radio performance improvement. In: 2018 52nd asilomar conference on signals, systems, and computers. IEEE, pp 1457–1461
Alias M, Saxena N, Roy A (2016) Efficient cell outage detection in 5G hetnets using hidden markov model. IEEE Commun Lett 20(3):562–565
Yu P, Zhou F, Zhang T, Li W, Feng L, Qiu X (2018) Self-organized cell outage detection architecture and approach for 5G H-CRAN. Wirel Commun Mob Comput 2018:6201386
Farooq H, Parwez MS, Imran A (2015) Continuous time Markov chain based reliability analysis for future cellular networks. In: 2015 IEEE global communications conference (GLOBECOM). IEEE, pp 1–6
Asheralieva A, Miyanaga Y (2016) Qos-oriented mode, spectrum, and power allocation for d2d communication underlaying lte-a network. IEEE Trans Veh Techno 65(12):9787–9800
Zhang L, Xiao M, Wu G, Alam M, Liang Y-C, Li S (2017) A survey of advanced techniques for spectrum sharing in 5G networks. IEEE Wirel Commun 24(5):44–51
Fan Z, Gu X, Nie S, Chen M (2017) D2D power control based on supervised and unsupervised learning. In: 2017 3rd IEEE international conference on computer and communications (ICCC). IEEE, pp 558–563
Rohwer JA, Abdallah CT, El-Osery A (2002) Power control algorithms in wireless communications. In: Digital wireless communications IV, vol 4740. International Society for Optics and Photonics, pp 151–159
Xu J, Gu X, Fan Z (2018) D2D power control based on hierarchical extreme learning machine. In: 2018 IEEE 29th annual international symposium on personal, indoor and mobile radio communications (PIMRC). IEEE, pp 1–7
Wang L-C, Cheng SH (2018) Data-driven resource management for ultra-dense small cells: an affinity propagation clustering approach. IEEE Trans Netw Sci Eng 6:267–279
Balevi E, Gitlin RD (2018) A clustering algorithm that maximizes throughput in 5G heterogeneous F-RAN networks. In: 2018 IEEE international conference on communications (ICC). IEEE, pp 1–6
Alqerm I, Shihada B (2018) Sophisticated online learning scheme for green resource allocation in 5G heterogeneous cloud radio access networks. IEEE Trans Mob Comput 17:2423–2437
AlQerm I, Shihada B (2017) Enhanced machine learning scheme for energy efficient resource allocation in 5G heterogeneous cloud radio access networks. In: IEEE symposium on personal, indoor and mobile radio communications (PIMRC), pp 1–7
Lin P-C, Casanova LFG, Fatty BK (2016) Data-driven handover optimization in next generation mobile communication networks. Mob Inf Syst 2016:2368427
Khunteta S, Chavva AKR (2017) Deep learning based link failure mitigation. In: 2017 16th IEEE international conference on machine learning and applications (ICMLA). IEEE, pp 806–811
Kanwal K (2017) Increased energy efficiency in lte networks through reduced early handover
Hou T, Feng G, Qin S, Jiang W (2018) Proactive content caching by exploiting transfer learning for mobile edge computing. Int J Commun Syst 31(11):e3706
Shen G, Pei L, Zhiwen P, Nan L, Xiaohu Y (2017) Machine learning based small cell cache strategy for ultra dense networks. In: 2017 9th international conference on wireless communications and signal processing (WCSP). IEEE, pp 1–6
Sadeghi A, Sheikholeslami F, Giannakis GB (2018) Optimal and scalable caching for 5G using reinforcement learning of space-time popularities. IEEE J Sel Top Signal Process 12(1):180–190
Zeydan E, Bastug E, Bennis M, Kader MA, Karatepe IA, Er AS, Debbah M (2016) Big data caching for networking: moving from cloud to edge. IEEE Commun Mag 54(9):36–42
LeCun Y (1998) The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/
Tang F, Fadlullah ZM, Mao B, Kato N (2018) An intelligent traffic load prediction-based adaptive channel assignment algorithm in sdn-iot: a deep learning approach. IEEE Internet Things J 5(6):5141–5154
Mohammadi M, Al-Fuqaha A, Sorour S, Guizani M (2018) Deep learning for iot big data and streaming analytics: a survey. IEEE Commun Surv Tutor 20(4):2923–2960
Chen M, Yang J, Zhou J, Hao Y, Zhang J, Youn C-H (2018) 5G-smart diabetes: toward personalized diabetes diagnosis with healthcare big data clouds. IEEE Commun Mag 56(4):16–23
Chen M, Yang J, Hao Y, Mao S, Hwang K (2017) A 5G cognitive system for healthcare. Big Data Cogn Comput 1(1):2
Kumar PM, Gandhi UD (2018) A novel three-tier internet of things architecture with machine learning algorithm for early detection of heart diseases. Comput Electr Eng 65:222–235
Saghezchi FB, Mantas G, Ribeiro J, Al-Rawi M, Mumtaz S, Rodriguez J (2017) Towards a secure network architecture for smart grids in 5G era. In: 13th international wireless communications and mobile computing conference (IWCMC). IEEE, pp 121–126
Miao Y, Jiang Y, Peng L, Hossain MS, Muhammad G (2018) Telesurgery robot based on 5G tactile internet. Mob Netw Appl 23(6):1645–1654
Paolini M, Fili S (2019) Ai and machine learning: Why now?
Benzaid C, Taleb T (2020) Ai-driven zero touch network and service management in 5G and beyond: challenges and research directions. IEEE Netw 34(2):186–194
Sun Y, Peng M, Zhou Y, Huang Y, Mao S (2019) Application of machine learning in wireless networks: key techniques and open issues. IEEE Commun Surv Tutor 21(4):3072–3108
Wang X, Gao L, Mao S (2016) Csi phase fingerprinting for indoor localization with a deep learning approach. IEEE Internet Things J 3(6):1113–1123
Wang J-B, Wang J, Wu Y, Wang J-Y, Zhu H, Lin M, Wang J (2018) A machine learning framework for resource allocation assisted by cloud computing. IEEE Netw 32(2):144–151
Le L-V, Sinh D, Lin B-SP, Tung L-P (2018) Applying big data, machine learning, and SDN/NFV to 5G traffic clustering, forecasting, and management. In: 2018 4th IEEE conference on network softwarization and workshops (NetSoft). IEEE, pp 168–176
de Vrieze C, Simic L, Mahonen P (2018) The importance of being earnest: performance of modulation classification for real RF signals. In: IEEE international symposium on dynamic spectrum access networks (DySPAN). IEEE, pp 1–5
Koumaras H, Tsolkas D, Gardikis G, Gomez PM, Frascolla V, Triantafyllopoulou D, Emmelmann M, Koumaras V, Osma MLG, Munaretto D et al (2018) 5GENESIS: the genesis of a flexible 5G facility. In: IEEE 23rd international workshop on computer aided modeling and design of communication links and networks (CAMAD). IEEE, pp 1–6
Kotz D, Henderson T (2005) Crawdad: a community resource for archiving wireless data at dartmouth. IEEE Pervasive Comput 4(4):12–14
Lee W, Kim M, Cho D-H (2018) Deep power control: transmit power control scheme based on convolutional neural network. IEEE Commun Lett 22(6):1276–1279
Ahmed KI, Tabassum H, Hossain E (2019) Deep learning for radio resource allocation in multi-cell networks. IEEE Net 33(6):188–195
Tariq F, Khandaker M, Wong K-K, Imran M, Bennis M, Debbah M (2019) A speculative study on 6g. arXiv preprint arXiv:1902.06700
Routray SK, Mohanty S (2019) Why 6G? Motivation and expectations of next-generation cellular networks. arXiv preprint arXiv:1903.04837
Strinati EC, Barbarossa S, Gonzalez-Jimenez JL, Kténas D, Cassiau N, Dehos C (2019) 6g: The next frontier. arXiv preprint arXiv:1901.03239
Saad W, Bennis M, Chen M (2019) A vision of 6g wireless systems: applications, trends, technologies, and open research problems. arXiv preprint arXiv:1902.10265
David K, Berndt H (2018) 6g vision and requirements: is there any need for beyond 5G? IEEE Veh Technol Mag 13(3):72–80
Li R (2018) Towards a new internet for the year 2030 and beyond
Zhang H, Ren Y, Chen K-C, Hanzo L et al (2019) Thirty years of machine learning: the road to pareto-optimal next-generation wireless networks. arXiv preprint arXiv:1902.01946
Luong NC, Hoang DT, Gong S, Niyato D, Wang P, Liang Y-C, Kim DI (2019) Applications of deep reinforcement learning in communications and networking: a survey. IEEE Commun Surv Tutor 21:3133–3174
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fourati, H., Maaloul, R. & Chaari, L. A survey of 5G network systems: challenges and machine learning approaches. Int. J. Mach. Learn. & Cyber. 12, 385–431 (2021). https://doi.org/10.1007/s13042-020-01178-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13042-020-01178-4