Abstract
Forest fires are one of the most serious natural disasters for the countries of the Mediterranean basin and especially for Greece. Studying the climate change effect on the maximization of the problem is a constant objective of the scientific community. This research initially proposes an innovative hybrid version of the statistical Chi-Square test that employs Soft Computing methods. More specifically it introduces the Fuzzy Chi Square Independence test that fuzzifies p values using proper Risk Linguistics, based on Fuzzy Membership functions. In the second stage, it proposes a new Hybrid approach that models the evolution of burned areas in Greece. First it analyzes the parameters and determines the way they affect the problem, by constructing Fuzzy cognitive maps. The system projects into the future and forecasts the evolution of the problem through the years till 2100, based on the variance of average monthly temperature and average rain height (due to climate change) for the months May–October based on various climate models. Historical data for the period 1984–2004 were used to test the system for the areas of Chania and Ilia.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
https://ams.confex.com/ams/7firenortheast/webprogram/Paper126829.html. Accessed 28 Feb 2017
http://www.ypeka.gr (in Greek). Accessed 28 Feb 2017
Anezakis VD (2015) Indices and models for the climate assessment and effects in Greece: Construction of a fuzzy cognitive map for the association of climate parameters and extreme phenomena. Climate Change Interdisciplinary Approaches, Published by the Democritus University of Thrace, pp. 45–65 (in Greek). http://www.fmenr.duth.gr/research/publications/Tomos_7.pdf. Accessed 3 Feb 2017
Anezakis VD, Iliadis L (2015) Estimation of fire ignition and fire spread risk indices with fuzzy conjunction models MAX–MIN and MAX–PROD. Environmental Policy: Theory and Practice. Published by the Democritus University of Thrace, pp. 20–32 (in Greek). http://utopia.duth.gr/~emanolas/files/Dervitsiotis.pdf. Accessed 3 Feb 2017
Anezakis VD, Demertzis K, Iliadis L, Spartalis S (2016a) A hybrid soft computing approach producing robust forest fire risk indices. IFIP Advances in Information and Communication Technology, AIAI September 2016. Thessaloniki Greece 475:191–203
Anezakis VD, Dermetzis K, Iliadis L, Spartalis S (2016b) Fuzzy cognitive maps for long-term prognosis of the evolution of atmospheric pollution, based on climate change scenarios: the case of Athens. Lecture Notes in Computer Science including subseries Lecture Notes in Artificial Intelligence Lecture Notes in Bioinformatics 9875:175–186. doi:10.1007/978-3-319-45243-2_16
Armenteras D, Gibbes C, Vivacqua CA, Espinosa JS, Duleba W, Goncalves F, Castro C (2016) Interactions between climate, land use and vegetation fire occurrences in El Salvador. Atmosphere 7(2):art. no. 26. doi:10.3390/atmos7020026
Bennett J, Briggs WL (2005) Using and understanding mathematics: a quantitative reasoning approach. In: Wesley A (ed) 3rd edn. Pearson, Boston (ISBN 0-321-22773-5)
Bougoudis I, Iliadis L, Papaleonidas A (2014) Fuzzy inference ANN ensembles for air pollutants modeling in a major urban area: the case of Athens. Eng Appl Neural Netw Commun Comput Inf Sci 459:1–14. doi:10.1007/978-3-319-11071-4_1
Bougoudis I, Dermetzis K, Iliadis L (2015) Fast and low cost prediction of extreme air pollution values with hybrid unsupervised learning. J Integr Comput Aided Eng 23(2):115–127. doi:10.3233/ICA-150505
Bougoudis I, Dermetzis K, Iliadis L (2016a) HISYCOL Α hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens. J Neural Comput Appl 27:1191–1206. doi:10.1007/s00521-015-1927-7
Bougoudis I, Demertzis K, Iliadis L, Anezakis VD, Papaleonidas A (2016b) Semi-supervised hybrid modeling of atmospheric pollution in urban centers. Commun Comput Inf Sci 629:51–63
Calviño-Cancela M, Chas-Amil ML, García-Martínez ED, Touza J (2017) Interacting effects of topography, vegetation, human activities and wildland-urban interfaces on wildfire ignition risk. For Ecol Manag 397:10–17. doi:10.1016/j.foreco.2017.04.033
Carvalho JP, Carola M, Tomé JAB (2006) Using rule-based Fuzzy cognitive maps to model dynamic cell behaviour in voronoi based cellular automata IEEE International Conference on Fuzzy Systems, July 2006, Vancouver, BC, Canada, art. no. 1681933:1687–1694
Corder GW, Foreman DI (2014) Nonparametric statistics: a step-by-step approach. Wiley, New York, p 288 (ISBN 978-1118840313)
Davis R, Yang Z, Yost A, Belongie C, Cohen W (2017) The normal fire environment-modeling environmental suitability for large forest wildfires using past, present, and future climate normals. For Ecol Manag 390:173–186. doi:10.1016/j.foreco.2017.01.027
Dugan AJ, Baker WL (2015) Sequentially contingent fires, droughts and pluvials structured a historical dry forest landscape and suggest future contingencies. J Veg Sci 26(4):697–710
Eberle S, Freeden W, Matthes U (2015) Forest fire spreading. Handbook of geomathematics: Second Edition. Springer, Berlin, pp 1349–1385. doi:10.1007/978-3-642-54551-1_70
Fang L, Yang J, Zu J, Li G, Zhang J (2015) Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. For Ecol Manag 356:2–12. doi:10.1016/j.foreco.2015.01.011
Fidanova S, Marinov P (2016) The impact of slope on fire spread simulation. Environ Eng Manag J 15(3):505–510.
Gil MA, Corral N, Gil P (1988) The minimum inaccuracy estimates in χ2 tests for goodness of fit with fuzzy observations. J Stat Plan Inference 19:95–115
Greenwood PE, Nikulin MS (1996) A guide to chi-squared testing. Wiley, New York (ISBN 978-0-471-55779-1)
Grzegorzewski P, Szymanowski H (2015) Chi-square test for homogeneity with fuzzy data. Adv Intell Syst Comput 315:151–158
Hamadeh N, Karouni A, Daya B, Chauvet P (2017) Using correlative data analysis to develop weather index that estimates the risk of forest fires in Lebanon and Mediterranean: assessment versus prevalent meteorological indices. Case Stud Fire Saf 7:8–22. doi:10.1016/j.csfs.2016.12.001
Holsinger L, Parks SA, Miller C (2016) Weather, fuels, and topography impede wildland fire spread in western US landscapes. For Ecol Manag 380:59–69. doi:10.1016/j.foreco.2016.08.035
Huang HM (2012) Using Fuzzy statistical analysis compares students’ perception between ethnic majority and ethnic minority. Int J Soc Sci Hum 2(2):151–155
Iliadis L (2007) Intelligent systems and application in risk estimation. In:Stamoulis A (ed) Thessaloniki, Greece (ISBN:978-960-6741-33-3)
Iliadis L, Papaleonidas A (2016) Computational intelligence and intelligent agents. In: Tziolas A (ed) Thessaloniki, Greece (ISBN: 978-960-418-601-3)
Iliadis L, Bougoudis l, Spartalis S (2014) Comparison of self organizing maps clustering with supervised classification for air pollution data sets. Proc AIAI 436:424–435. doi:10.1007/978-3-662-44654-6_42
Jellouli O, Bernoussi A, Amharref M, Ouardouz M (2016) Modeling of wind flow and its impact on forest fire spread: cellular automata approach. LNCS 9863:269–279. doi:10.1007/978-3-319-44365-2_27
Kailidis D (1990) Forest fires. 3rd edn. Giahoudi-Giapouli, Thessaloniki, pp 510 (in Greek)
Kerr GH, DeGaetano AT, Stoof CR, Ward D (2016) Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble. Theor Appl Climatol. doi:10.1007/s00704-016-1994-4
Lin PC, Wu B, Watada J (2012) Goodness-of-fit test for membership functions with fuzzy data. Int J Innov Comput Inf Control 8(10B):7437–7450
Madau DP, Feldkamp LA (1996) Influence value defuzzification method. In: Proceedings of the 5th IEEE international conference on fuzzy systems, 8–11 September, USA, 3, pp 1819–1824 doi:10.1109/FUZZY.1996.552647
Miao Q, Tian X (2016) Assessment of burn probability assessment in Daxing’anling under multi-climatic scenarios. Linye Kexue Sci Silvae Sin 52(10):109–116. doi:10.11707/j.1001-7488.20161014
Papageorgiou EI, Salmeron JL (2013) A review of Fuzzy cognitive maps research during the last decade. IEEE Trans Fuzzy Syst 21(1):66–79
Pasquet S, Pellerin S, Poulin M (2015) Three decades of vegetation changes in peat lands isolated in an agricultural landscape. Appl Veg Sci 18(2):220–229
Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42(1):59–66
Salmeron JL, Froelich W (2016) Dynamic optimization of Fuzzy cognitive maps for time series forecasting. Knowl Based Syst 105:29–37
Scafetta N, Willson RC (2014) ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophys Sp Sci 350(2):421–442. doi:10.1007/s10509-013-1775-9
Scasta JD, Weir JR, Stambaugh MC (2016) Droughts and wildfires in western US Rangelands. Rangelands 38(4):197–203. doi:10.1016/j.rala.2016.06.003
Schoennagel T, Sherriff RL, Veblen TT (2011) Fire history and tree recruitment in the Colorado front range upper montane zone: implications for forest restoration. Ecol Appl 21(6):2210–2222
Shan Y, Wang Y, Flannigan M, Tang S, Sun P, du F (2017) Spatiotemporal variation in forest fire danger from 1996 to 2010 in Jilin Province, China. J For Res. doi:10.1007/s11676-017-0384-9
Stagl J, Weidinger R (2016) Climate-related forest fire risk. regional assessment of global change impacts: the project GLOWA-Danube, pp 639–650. doi:10.1007/978-3-319-16751-0_74
Štula M, Stipaničev D, Šeric L, Krstinić D (2011) Fuzzy cognitive map for decision support in image post-processing. International Conference on Systems, Signals, and Image Processing, IWSSIP June 2011, Sarajevo, Bosnia and Herzegovina, art. no. 5977418, pp 311–314
Taheri SM, Hesamian G (2011) Goodman–Kruskal measure of association for fuzzy-categorized variables. Kybernetika 47(1):110–122
Taheri SM, Hesamian G, Viertl R (2016) Contingency tables with fuzzy information. Commun Stat Theory Methods 45(20):5906–5917
Tian XR, Dai X, Wang MY, Zhao FJ, Shu LF (2016) Forest fire risk assessment for China under different climate scenarios. Chin J Appl Ecol 27(3):769–776. doi:10.13287/j.1001-9332.201603.034
Törnqvist L, Vartia P, Vartia YO (1985) How should relative changes be measured. Am Stat 39(1):43–46. doi:10.2307/2683905
Van Leekwijck W, Kerre EE (1999) Defuzzification: criteria and classification. Fuzzy Sets Syst 108(2):159–178. doi:10.1016/S0165-0114(97)00337-0
Vidal R, Salmeron JL, Mena A, Chulvi V (2015) Fuzzy cognitive map-based selection of TRIZ trends for eco-innovation of ceramic industry products. J Cleaner Prod 107:202–214
Wang X, Parisien MA, Taylor SW, Candau JN, Stralberg D, Marshall GA Little JM, Flannigan MD (2017) Projected changes in daily fire spread across Canada over the next century. Environ Res Lett 12(2):art. no. 025005. doi:10.1088/1748-9326/aa5835
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Anezakis, VD., Demertzis, K., Iliadis, L. et al. Hybrid intelligent modeling of wild fires risk. Evolving Systems 9, 267–283 (2018). https://doi.org/10.1007/s12530-017-9196-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12530-017-9196-6