Skip to main content
Log in

Combinatorial t-designs from special functions

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

A special function is a function either of special form or with a special property. Special functions have interesting applications in coding theory and combinatorial t-designs. The main objective of this paper is to survey t-designs constructed from special functions, including quadratic functions, almost perfect nonlinear functions, almost bent functions, bent functions, bent vectorial functions, and planar functions. These combinatorial designs are not constructed directly from such functions, but come from linear codes which are constructed with such functions. As a byproduct, this paper also surveys linear codes from certain special functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assmus Jr., E.F., Mattson Jr., H.F.: Coding and combinatorics. SIAM Rev. 16, 349–388 (1974)

    Article  MathSciNet  Google Scholar 

  2. Canteaut, C., Charpin, P., Dobbertin, H.: Weight divisibility of cyclic codes, highly nonlinear functions on \(f_{2^{m}}\), and crosscorrelation of maximum-length sequences. SIAM J. Discret. Math. 13, 105–138 (1998)

    Article  Google Scholar 

  3. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15, 125–126 (1998)

    Article  MathSciNet  Google Scholar 

  4. Carlet, C., Ding, C., Yuan, J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51, 2089–2102 (2005)

    Article  MathSciNet  Google Scholar 

  5. Carlet, C., Mesnager, S.: On the construction of bent vectorial functions. International Journal of Information and Coding Theory 1, 133–148 (2010)

    Article  MathSciNet  Google Scholar 

  6. Carlet, C., Mesnager, S.: Four decades of research on bent functions. Des. Codes Cryptogr. 78, 5–50 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cusick, T.W., Dobbertin, H.: Some new three-valued crosscorrelation functions for binary m-sequences. IEEE Trans. Inform. Theory 42, 1238–1240 (1996)

    Article  MathSciNet  Google Scholar 

  8. Dillon, J.: On the dimension of an APN code. Cryptogr. Commun. 3, 275–279 (2011)

    Article  MathSciNet  Google Scholar 

  9. Dillion, J.F., Schatz, J.R.: Block Designs with the Symmetric Difference Property. In: Proc. of the NSA Mathematical Sciences Meetings, (Ward R. L. Ed.), pp. 159–164 (1987)

  10. Ding, C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 60, 3265–3275 (2015)

    Article  MathSciNet  Google Scholar 

  11. Ding, C.: A construction of binary linear codes from Boolean functions. Disc. Math. 339, 2288–2303 (2016)

    Article  MathSciNet  Google Scholar 

  12. Ding, C.: An infinite family of Steiner systems s(2, 4, 2m) from cyclic codes. J. Combinatorial Designs 26, 127–144 (2018)

    Article  MathSciNet  Google Scholar 

  13. Ding, C.: Infinite families of t-designs from a type of five-weight codes. Des. Codes Cryptogr. 86, 703–719 (2018)

    Article  MathSciNet  Google Scholar 

  14. Ding, C.: Designs from Linear Codes. World Scientific, Singapore (2018)

    Book  Google Scholar 

  15. Ding, C., Li, C.: Infinite families of 2-designs and 3-designs from linear codes. Disc. Math. 340, 2415–2431 (2017)

    Article  MathSciNet  Google Scholar 

  16. Ding, C., Munemasa, A., Tonchev, V.: Bent vectorial functions, codes and designs. arXiv:1808.08487v1 [math.CO]

  17. Du, X., Wang, R., Fan, C.: Infinite families of 2-designs from a class of cyclic codes with two non-zeros. arXiv:1904.04242 [math.CO]

  18. Du, X., Wang, R., Tang, C., Wang, Q.: Infinite families of 2-designs from two classes of binary cyclic codes with three nonzeros. arXiv:1903.08153 [math.CO]

  19. Du, X., Wang, R., Tang, C., Wang, Q.: Infinite families of 2-designs from two classes of linear codes. arXiv:1903.07459 [math.CO]

  20. Feng, K., Luo, J.: Value distributions of exponential sums from perfect nonlinear functions and their applications. IEEE Trans. Inf. Theory 53, 3053–3041 (2007)

    Article  MathSciNet  Google Scholar 

  21. Gold, R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Trans. Inf. Theory 14, 154–156 (1967)

    Article  Google Scholar 

  22. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  23. Kantor, W.M.: Symplectic groups, symmetric designs, and line ovals. J. Algebra 33, 43–58 (1975)

    Article  MathSciNet  Google Scholar 

  24. Kantor, W.M.: Exponential number of two-weight codes, difference sets and symmetric designs. Disc. Math. 46, 95–98 (1983)

    Article  MathSciNet  Google Scholar 

  25. Kasami, T.: Weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Inf. Control. 18, 369–394 (1971)

    Article  Google Scholar 

  26. Kasami, T., Lin, S., Peterson, W.W.: Some results on cyclic codes which are invariant under the affine group and their applications. Inf. Control. 11, 475–496 (1968)

    Article  MathSciNet  Google Scholar 

  27. MacWilliams, F.J., Sloane, N.J.A.: The theory of Error-Correcting codes. North holland amsterdam (1977)

  28. McQuire, G.: Quasi-symmetric designs and codes meeting the Grey-Rankin bound. J. Comb. Theory A 78, 280–291 (1997)

    Article  MathSciNet  Google Scholar 

  29. Mesnager, S.: Bent Functions: Fundamentals and Results. Springer Verlag, Switzerland (2016)

    Book  Google Scholar 

  30. Pott, A.: Almost perfect and planar functions. Des. Codes Cryptogr. 78, 141–195 (2016)

    Article  MathSciNet  Google Scholar 

  31. Tonchev, V.D.: Quasi-symmetric designs, codes, quadrics, and hyperplane sections. Geom. Dedicata. 48, 295–308 (1993)

    Article  MathSciNet  Google Scholar 

  32. Van Lint, J.H.: Introduction to Coding Theory, 3rd edn. Springer Verlag, New York (1999)

    Book  Google Scholar 

  33. Wolfmann, J.: Bent Functions and Coding Theory. In: Difference Sets, Sequences and Their Correlation Properties, A. Pott, P. V. Kumar, T. Helleseth and D. Jungnickel, eds., pp. 393–417. Amsterdam: Kluwer (1999)

  34. Xiang, C., Ding, C., Mesnager, S.: Optimal codebooks from binary codes meeting the Levenshtein bound. IEEE Trans. Inf. Theory 61, 6526–6535 (2015)

    Article  MathSciNet  Google Scholar 

  35. Yuan, J., Carlet, C.: Ding, c: the weight distribution of a class of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory 52, 712–717 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Tang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Boolean Functions and Their Applications IV

Guest Editors: Lilya Budaghyan and Tor Helleseth

C. Ding’s research was supported by the Hong Kong Research Grants Council, Proj. No. 16300418. C. Tang was supported by National Natural Science Foundation of China (Grant No. 11871058) and China West Normal University (14E013, CXTD2014-4 and the Meritocracy Research Funds).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Tang, C. Combinatorial t-designs from special functions. Cryptogr. Commun. 12, 1011–1033 (2020). https://doi.org/10.1007/s12095-020-00442-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-020-00442-2

Keywords

Mathematics Subject Classification 2010