Abstract
With the development of micro-electromechanical systems (MEMS), miniaturized, low-power and low-cost inertial measurement units (IMUs) have been widely integrated into mobile terminals and smart wearable devices. This provides the prospect of a broad application for the inertial sensor-based pedestrian dead-reckoning (IPDR) systems. Especially for indoor navigation and indoor positioning, the IPDR systems have many unique advantages that other methods do not have. At present, a large number of technologies and methods for IPDR systems are proposed. In this paper, we have analyzed and outlined the IPDR systems based on about 80 documents in the field of IPDR in recent years. The article is structured in the form of an introduction-elucidation-conclusion framework. First, we proposed a general framework to explore the structure of an IPDR system. Then, according to this framework, the IPDR system was divided into six relatively independent subproblems, which were discussed and summarized separately. Finally, we proposed a graph structure of IPDR systems, and a sub-directed graph, formed by selecting a combined path from the start node to the end node, skillfully constitutes a technical route of one specific IPDR system. At the end of the article, we summarized some key issues that need to be resolved before the IPDR systems are widely used.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
L. X. Zheng, W. C. Zhou, W. W. Tang, X. C. Zheng, A. Peng, H. R. Zheng. A 3D indoor positioning system based on low-cost MEMS sensors. Simulation Modelling Practice and Theory, vol. 65, pp. 45–56, 2016. Doi: 10.1016/j.simpat.2016.01.003.
A. Correa, M. Barcelo, A. Morell, J. L. Vicario. A review of pedestrian indoor positioning systems for mass market applications. Sensors, vol. 17, Article number 1927, 2017. Doi: 10.3390/s17081927.
J. Gimenez, A. Amicarelli, J. M. Toibero, F. d.Sciascio, R. Carelli. Iterated conditional modes to solve simultaneous localization and mapping in Markov random fields context. International Journal of Automation and Computing, vol. 15, no. 3, pp. 310–324, 2018. Doi: 10.1007/s11633-017-1109-4.
T. Z. Lv, C. X. Zhao, H. F. Zhang. An improved Fast-SLAM algorithm based on revised genetic resampling and SR-UPF. International Journal of Automation and Computing, vol. 15, no. 3, pp. 325–334, 2018. Doi: 10.1007/s11633-016-1050-y.
R. Harle. A survey of indoor inertial positioning systems for pedestrians. IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1281–1293, 2013. Doi: 10.1109/SURV. 2012.121912.00075.
M. G. Puyol, P. Robertson, M. Angermann. Managing large-scale mapping and localization for pedestrians using inertial sensors. In Proceedings of IEEE International Conference on Pervasive Computing and Communications Workshops, San Diego, USA, 2013. Doi: 10.1109/PerComW.2013.6529468.
C. Fischer, P. T. Sukumar, M. Hazas. Tutorial: implementing a pedestrian tracker using inertial sensors. IEEE Pervasive Computing, vol. 12, no. 2, pp. 17–27, 2013. DOI: 10.1109/MPRV.2012.16.
Q. L. Yuan, I. M. Chen. Simultaneous localization and capture with velocity information. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011. DOI: 10.1109/IROS.2011.6094447.
T. Gädeke, J. Schmid, M. Zahnlecker, W. Stork, K. D. Müller-Glaser. Smartphone pedestrian navigation by foot-IMU sensor fusion. In Proceedings of the Ubiquitous Positioning, Indoor Navigation, and Location Based Service, Helsinki, Finland, 2012. DOI: 10.1109/UPINLBS.2012. 6409787.
D. D. Pham, Y. S. Suh. Pedestrian navigation using footmounted inertial sensor and LIDAR. Sensors, vol. 16, no. 1, pp. 120–136, 2016. Doi: 10.3390/s16010120.
C. Fischer, K. Muthukrishnan, M. Hazas, H. Gellersen. Ultrasound-aided pedestrian dead reckoning for indoor navigation. In Proceedings of ACM International Workshop on Mobile Entity Localization and Tracking in GPS-Less Environments, San Francisco, USA, pp. 31–36, 2008. DOI: 10.1145/1410012.1410020.
E. Foxlin. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer Graphics and Applications, vol. 25, no. 6, pp. 38, 2005. DOI: 10.1109/MCG.2005. 140.
J. C. Alvarez, D. Alvarez, A. López, R. C. González. Pedestrian navigation based on a waist-worn inertial sensor. Sensors, vol. 12, no. 8, pp. 10536–10549, 2012. DOI: 10. 3390/s120810536.
S. K. Park, Y. S. Suh. A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems. Sensors, vol. 10, no. 10, pp. 9163–9178, 2010. DOI: 10.3390/s 101009163.
Z. C. Zhang, H. Y. Wang, Z. H. Zhao, Z. J. Wu. A SVM-based adaptive stance detection method for pedestrian inertial navigation. In Proceedings of the 10th International Conference on Sensing Technology, Nanjing, China, 2016. DOI: 10.1109/ICSensT.2016.7796271.
Y. L. Hsu, J. S. Wang, C. W. Chang. A wearable inertial pedestrian navigation system with quaternion-based extende. Kalman filter for pedestrian localization. IEEE Sensors Journal, vol. 17, no. 10, pp. 3193–3206, 2017. DOI: 10.1109/JSEN.2017.2679138.
G. Panahandeh, N. Mohammadiha, A. Leijon, P. Handel. Continuous hidden Markov model for pedestrian activity classification and gait analysis. IEEE Transactions on In-strumentation and Measurement, vol. 62, no. 5, pp. 1073–1083, 2013. DOI: 10.1109/TIM.2012.2236792.
H. M. Zhang, W. Z. Yuan, Q. Shen, T. Li, H. L. Chang. A handheld inertial pedestrian navigation system with accurate step modes and device poses recognition. IEEE Sensors Journal, vol. 15, no. 3, pp. 1421–1429, 2014. DOI: 10.1109/JSEN.2014.2363157.
X. P. Yun, E. R. Bachmann, H. Moore, J. Calusdian. Self-contained position tracking of human movement using small inertial/magnetic sensor modules. In Proceedings of IEEE International Conference on Robotics and Automa-tion, Roma, Italy, pp. 2526–2533, 2007. DOI: 10.1109/ROBOT.2007.363845.
P. Kasebzadeh, G. Hendeby, C. Fritsche, F. Gunnarsson, F. Gustafsson. IMU dataset for motion and device mode classification. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 2017. DOI: 10.1109/IPIN.2017.8115956.
M. Edel, E. Köppe. An advanced method for pedestrian dead reckoning using BLSTM-RNNs. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Banff, Canada, 2015. DOI: 10.1109/IPIN. 2015.7346954.
M. Edel M, E. Köppe. Binarized-BLSTM-RNN based human activity recognition. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Alcala de Henares, Spain, 2016. DOI: 10.1109/IPIN.2016. 7743581.
B. Wagstaff, V. Peretroukhin, J. Kelly. Improving footmounted inertial navigation through real-time motion Springer classification. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 2017. DOI: 10.1109/IPIN.2017.8115947.
B. Beaufils, F. Chazal, M. Grelet, B. Michel. Stride detection for pedestrian trajectory reconstruction: A machine learning approach based on geometric patterns. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 2017. DOI: 10. 1109/IPIN.2017.8115867.
M. R. Ren, K. Pan, Y. H. Liu, H. Y. Guo, X. D. Zhang, P. Wang. A novel pedestrian navigation algorithm for a footmounted inertial-sensor-based system. Sensors, vol. 16, no. 1, pp. 139–151, 2016. DOI: 10.3390/s16010139.
M. Elhoushi, J. Georgy, A. Noureldin, M. J. Korenberg. Motion mode recognition for indoor pedestrian navigation using portable devices. IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 1, pp. 208–221, 2016. DOI: 10.1109/TIM.2015.2477159.
F. Inderst, F. Pascucci, M. Santoni. 3D pedestrian dead reckoning and activity classification using waist-mounted inertial measurement unit. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Banff, Canada, 2015. DOI: 10.1109/IPIN.2015.7346953.
M. N. Muhammad, Z. Salcic, K. I. K. Wang. Subtractive clustering as ZUPT detector. In Proceedings of the 11th IEEE International Conference on Ubiquitous Intelligence and Computing and the 11th IEEE International Conference on Autonomic and Trusted Computing and the 14th IEEE International Conference on Scalable Computing and Communications and Its Associated Workshops, Bali, Indonesia, pp. 349–355, 2014. DOI: 10.1109/UIC-ATCScalCom. 2014.114.
E. M. Diaz, A. L. M. Gonzalez, F. de Ponte Müller. Standalone inertial pocket navigation system. In Proceedings of IEEE/Institute of Navigation (ION) Position, Location and Navigation Symposium, Monterey, USA, pp. 241–251, 2014. DOI: 10.1109/PLANS.2014.6851382.
K. C. Lan, W. Y. Shih. On calibrating the sensor errors of a PDR-based indoor localization system. Sensors, vol. 13, no. 4, pp. 4781–4810, 2013. DOI: 10.3390/s130404781.
J. Perry, J. M. Burnfield. Gait Analysis: Normal and Pathological Function, Thorofare, USA: SLACK Incoporated, 1992.
Y. S. Suh, S. Park. Pedestrian inertial navigation with gait phase detection assisted zero velocity updating. In Proceedings of the 4th International Conference on Autonomous Robots and Agents, Wellington, New Zealand, pp. 336–341, 2009. DOI: 10.1109/ICARA.2000.4803999.
A. Mannini, V. Genovese, S. A. Maria. Online decoding of hidden Markov models for gait event detection using footmounted gyroscopes. IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 4, pp. 1122–1130, 2014. DOI: 10.1109/JBHI.2013.2293887.
J. Ruppelt, N. Kronenwett, G. F. Trommer. A novel finite state machine based step detection technique for pedestrian navigation systems. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Banff, Canada, 2015. DOI: 10.1109/IPIN.2015.7346771.
Z. Q. Zhang, X. L. Meng. Use of an inertial/magnetic sensor module for pedestrian tracking during normal walking. IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 3, pp. 776–783, 2015. DOI: 10.1109/TIM.2014.2349211.
X. C. Tian, J. B. Chen, Y. Q. Han, J. Y. Shang, N. Li. A pedestrian navigation system based on MEMS inertial measurement unit. In Proceedings of the 35th Chinese Control Conference, Chengdu, China, pp. 5325–5328, 2016. Doi: 10.1109/ChiCC.2016.7554183.
R. Feli. Alonso, E. Zalama Casanova, J. Gómez García-Bermejo. Pedestrian tracking using inertial sensors. Journal of Physical Agents, vol. 3, no. 1, pp. 353, 2009. Doi: 10.14198/JoPha.2009.3.1.05.
C. L. Huang, Z. Y. Liao, L. Zhao. Synergism of INS and PDR in self-contained pedestrian tracking with a miniature sensor module. IEEE Sensors Journal, vol. 10, no. 8, pp. 1349–1359, 2010. Doi: 10.1109/JSEN.2010.2044238.
F. Montorsi, F. Pancaldi, G. M. Vitetta. Design and implementation of an inertial navigation system for pedestrians based on a low-cost MEMS IMU. In Proceedings of IEEE International Conference on Communications Workshops, Budapest, Hungary, pp. 57–61, 2013. Doi: 10.1109/ICCW. 2013.6649201.
Y. Li, J. G. Wang. A pedestrian navigation system based on low cost IMU. Journal of Navigation, vol. 67, no. 6, pp. 929–949, 2014. DOI: 10.1017/S0373463314000344.
X. C. Zheng, H. Yang, W. W. Tang, S. X, Pu, L. X. Zheng, H. R. Zhng, B. Liao, J. Wang. Indoor pedestrian navigation with shoe-mounted inertial sensors. Multimedia and Ubiquitous Engineering, J. Park, S. C. Chen, J. M. Gil, N. Yen, Eds., Berlin Heidelberg, Germany: Springer, pp. 67–73, 2014. DOI: 10.1007/978-3-642-54900-7—10.
L. X. Zheng, W. C. Zhou, W. W. Tang, X. C. Zheng, H. Yang, S. X. Pu, C. X. Li, B. Y. Tang, Y. N. Tang. A footmounted sensor based 3D indoor positioning approach. In Proceedings of IEEE International Symposium on Autonomous Decentralized Systems, Taichung, Taiwan, China, pp. 145–150, 2015. DOI: 10.1109/ISADS.2015. 49.
M. Ilyas, K. Cho, S. H. Baeg, S. Park. Drift reduction in IMU-only pedestrian navigation system in unstructured environment. In Proceedings of the 10th Asian Control Conference, Kota Kinabalu, Malaysia, 2015. DOI: 10.1109/ASCC.2015.7244849.
M. Benoussaad, B. Sijobert, K. Mombaur, C. Azeved. Coste. Robust foot clearance estimation based on the integration of foot-mounted IMU acceleration data. Sensors, vol. 16, no. 1, pp. 12–24, 2016. DOI: 10.3390/s16010012.
M. Ilyas, K. Cho, S. H. Baeg, S. Park. Drift reduction in pedestrian navigation system by exploiting motion constraints and magnetic field. Sensors, vol. 16, no. 9, Article number 1455, 2016. DOI: 10.3390/s16091455.
I. Skog, P. Handel, J. O. Nilsson, J. Rantakokko. Zero-velocity detection-An algorithm evaluation. IEEE Transactions on Biomedical Engineering, vol. 57, no. 11, pp. 2657–2666, 2010. DOI: 10.1109/TBME.2010.2060723.
A. Mikov, A. Moschevikin, A. Fedorov, A. Sikora. A localization system using inertial measurement units from wireless commercial hand-held devices. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 2013. DOI: 10.1109/IPIN.2013.6817924.
W. C. Zhang, X. H. Li, D. Y. Wei, X. C. Ji, H. Yuan. A foot-mounted PDR system based on IMU/EKF+HMM+ ZUPT+ZARU+HDR+Compass algorithm. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 2017. DOI: 10. 1109/IPIN.2017.8115916.
Z. Y. Xu, J. M. Wei, B. Zhang, W. J. Yang. A robust method to detect zero velocity for improved 3D personal navigation using inertial sensors. Sensors, vol. 15, no. 4, pp. 7708–7727, 2015. DOI: 10.3390/s150407708.
N. Castaneda, S. Lamy-Perbal. An improved shoe-mounted inertial navigation system. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 2010. DOI: 10.1109/IPIN. 2010.5646858.
S. Lamy-Perbal, M. Boukallel, N. Castaneda. An improved pedestrian inertial navigation system for indoor environments. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, pp. 2505–2510, 2011. DOI: 10.1109/IROS.2011. 6094456.
A. Perttula, H. Leppäkoski, M. Kirkko-Jaakkola, P. Davidson, J. Collin, J. Takala. Distributed indoor positioning system with inertial measurements and map matching. IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 11, pp. 2682–2695, 2014. DOI: 10.1109/TIM. 2014.2313951.
J. Taborri, E. Palermo, S. Rossi, P. Cappa. Gait partitioning methods: a systematic review. Sensors, vol. 16, no. 1, pp. 66–85, 2016. DOI: 10.3390/s16010066.
K. Abdulrahim, C. Hide, T. Moore, C. Hill. Aiding MEMS IMU with building heading for indoor pedestrian navigation. In Proceedings of Ubiquitous Positioning Indoor Navigation and Location Based Service, Kirkkonummi, Finland, 2010. DOI: 10.1109/UPINLBS.2010.5653986.
J. Pinchin, C. Hide, T. Moore. A particle filter approach to indoor navigation using a foot mounted inertial navigation system and heuristic heading information. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Sydney, Australia, 2013. DOI: 10. 1109/IPIN.2012.6418916.
J. Pinchin, C. Hide, K. Abdulrahim, T. Moore, C. Hill. Integration of heading-aided MEMS IMU with GPS for pedestrian navigation. In Proceedings of the 24th International Techni cal Meeting of The Satelli te Di vision of the Institute of Navigation, Oregon, Portland, pp. 1346–1356, 2011.
Y. Gu, Q. Song, Y. H. Li, M. Ma. Foot-mounted pedestrian navigation based on particle filter with an adaptive weight updating strategy. Journal of Navigation, vol. 68, no. 1, pp. 23–38, 2015. DOI: 10.1017/S0373463314000496.
Gu, Q. Song, Y. H. Li, M. Ma, Z. M. Zhou. An anchor-based pedestrian navigation approach using only inertial sensors. Sensors, vol. 16, no. 3, Article number 334, 2016. DOI: 10.3390/s16030334.
A. R. Jiménez, F. Seco, J. C. Prieto, J. Guevara. Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU. In Proceedings of the 7th Workshop on Positioning, Navigation and Communication, Dresden, Germany, pp. 135–143, 2010. DOI: 10.1109/WPNC.2010.5649300.
I. Skog, J. O. Nilsson, P. Händel. Evaluation of zero-velocity detectors for foot-mounted inertial navigation systems. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 2010. DOI: 10.1109/IPIN.2010.5646936.
H. Fourati, N. Manamanni, L. Afilal, Y. Handrich. Position estimation approach by Complementary Filter-aided IMU for indoor environment. In Proceedings of European Control Conference, Zurich, Switzerland, pp. 4208–4213, 2013. DOI: 10.23919/ECC.2013.6669211.
M. H. Afzal, V. Renaudin, G. Lachapelle. Magnetic field based heading estimation for pedestrian navigation environments. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Gu imaraes, Portugal, 2011. DOI: 10.1109/IPIN.2011.6071947.
M. Ma, Q. Song, Y. H. Li, Y. Gu, Z. M. Zhou. A heading error estimation approach based on improved Quasi-static magnetic Field detection. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Alcala de Henares, Spain, 2016. DOI: 10.1109/IPIN. 2016.7743588.
V. Renaudin, C. Combettes, C. Marchand. Toward a free inertial pedestrian navigation reference system. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Busan, South Korea, pp.167-176, 2015. DOI: 10.1109/IPIN.2014.7275481.
J. Borestein, L. Ojeda, S. Kwanmuang. Heuristic reduction of gyro drift in IMU-based personnel tracking systems. In Proceedings of SPIE Defense, Security and Sensing Conference, Orlando, USA, 2009. DOI: 10.1117/12.816921.
R. Ashkar, M. Romanovas, V. Goridko, M. Schwaab, M. Traechtler, Y, Manoli. A low-cost shoe-mounted inertial navigation system with magnetic disturbance compensation. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 2014. DOI: 10.1109/IPIN.2013.6817896.
E. M. Diaz. Inertial pocket navigation system: Unaided 3D positioning. Sensors, vol. 15, no. 4, pp. 9156–9178, 2015. DOI: 10.3390/s150409156.
H. Martin, J. A. Besada, A. M. Bernardos, E.Metola, J. R. Casar. Simplified pedestrian tracking filters with positioning and foot-mounted inertial sensors. International Journal of Distributed Sensor Networks, vol. 2014, Article number 850835, 2014. DOI: 10.1155/2014/850835.
H. Benzerrouk, A. Nebylov, P. Closas. MEMS IMU/ZUPT based cubature Kalman filter applied to pedestrian navigation system. In Proceedings of International Electronic Conference on Sensors and Applications, 2014. DOI: 10.3390/ecsa-1-e002.
H. Fourati. Heterogeneous data fusion algorithm for pedestrian navigation via foot-mounted inertial measurement unit and complementary filter. IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 1, pp. 221–229, 2014. DOI: 10.1109/TIM.2014.2335912.
H. F. Xing, J. L. Li, B. Hou, Y. J. Zhang, M. F. Guo. Pedestrian stride length estimation from IMU measurements and ANN based algorithm. Journal of Sensors, vol. 2017, Article number 6091261, 2017. DOI: 10.1155/2017/6091261.
H. Weinberg. An-602: Using the ADXL202 in pedometer and personal navigation applications. Application Notes American Devices, Norwood, USA: Analog Devices Inc., 2002.
J. Scarlet. Enhancing the performance of pedometers using a single accelerometer. Application Notes American Devices, Analog Devices AN-900, Norwood, USA: Application Note Inc., 2005.
J. W. Kim, H. J. Jang, D. H. Hwang, C. Park. A Step, Stride an. Heading Determination for the Pedestrian Navigation System. Journal of Global Positioning Systems, vol. 3, no. 1–2, pp. 273–279, 2004. DOI: 10.5081/jgps.3. 1.273.
A. G. Mikov, A. S. Galov. Data processing algorithms for MEMS based multi-component inertial measurement unit for indoor navigation. In Proceedings of the 24th Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, Russia, 2017. DOI: 10.23919/ICINS.2017.7995564.
A. Perttula, H. Leppäkoski, M. Kirkko-Jaakkola, P. Davidson, J. Collin, J. Takala. Distributed indoor positioning system with inertial measurements and map matching. IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 11, pp. 2682–2695, 2014. DOI: 10.1109/TIM.2014. 2313951.
W. Kang, Y. Han. SmartPDR: Smartphone-based pedestrian dead reckoning for indoor localization. IEEE Sensors Journal, vol. 15, no. 5, pp. 2906–2916, 2015. DOI: 10.1109/JSEN.2014.2382568.
J. Hightower, G. Borriello. Particle filters for location estimation in ubiquitous computing: A case study. International Conference on Ubiquitous Computing, N. Davies, E. D. Mynatt, I. Siio, Eds., Berlin Heidelberg, Germany: Springer, pp. 88–106, 2004. DOI: 10.1007/978-3-540-30119-6*6.
O. Woodman, R. Harle. Pedestrian localisation for indoor environments. In Proceedings of the 10th International Conference on Ubiquitous Computing, ACM, Seoul, Korea, pp. 114–123, 2008. DOI: 10.1145/1409635.1409651.
D. A. Medina, M. Schwaab, D. Plaia, M. Romanovas, M. Traechtler, Y. Manoli. A foot-mounted pedestrian localization system with map motion constraints. In Proceedings of the 12th Workshop on Positioning, Navigation and Communication, Dresden, Germany, 2015. DOI: 10.13140/RG.2.1.1385.1289.
C. Y. Yu, N. El-Sheimy, H. Y. Lan, Z. B. Liu. Map-based indoor pedestrian navigation using an auxiliary particle filter. Micromachines, vol. 8, no. 7, pp. 225–240, 2017. DOI: 10.3390/mi8070225.
Acknowledgements
This work was supported by National Key Research and Development of China (No. 2017YFB1002800)
Author information
Authors and Affiliations
Corresponding author
Additional information
Recommended by Associate Editor Jangmyung Lee
Yuan Wu received the B. Sc. degree in computer science and technology from Southwest University, China in 2016. He is now a master student in computer application technology at Insititute of Automation, Chinese Academy of Sciences, China.
His research interests include motion tracking based on inertial sensors, human-computer interaction and virtual reality.
Hai-Bing Zhu received the B.Sc. degree in automation and the M. Sc. degree in pattern recognition and intelligent control from University of Science and Technology, China in 1997 and 2000, respectively. He received the Ph. D. degree in control theory and control engineering from the Institute of Automation, Chinese Academy of Sciences, China in 2003. He was an assistant researcher at the Institute of Automation, Chinese Academy of Sciences from 2003 to 2007, and has been a senior engineer since 2007.
His research interests include intelligent robots, sensors and automation technologies, and embedded system applications.
Qing-Xiu Du received the B. Sc. and M. Sc. degrees in computer science and engineering from Harbin Institute of Technology, China in 1982 and 1985, respectively. She is currently a professor at Institute of Automation, Chinese Academy of Sciences, China.
Her research interests include intelligent perception, intelligent human interaction, virtual reality, and digital media technology.
Shu-Ming Tang received the Ph. D. degree in control theory and control engineering from Graduate University of Chinese Academy of Sciences, China in 2005. Currently, she is an associate research professor in the Institute of Automation, Chinese Academy of Sciences. She has published extensive papers in her research areas. She is a committee member of Robot Sports in China, an associate editor of the IEEE Transactions on Intelligent Transportation Systems, a co-chair of the Technical Committee on Automatic Train Supervision (ATS) of Intelligent Transportation Systems Society.
Her research interests are include intelligent vehicles and intelligent transportation systems.
Rights and permissions
About this article
Cite this article
Wu, Y., Zhu, HB., Du, QX. et al. A Survey of the Research Status of Pedestrian Dead Reckoning Systems Based on Inertial Sensors. Int. J. Autom. Comput. 16, 65–83 (2019). https://doi.org/10.1007/s11633-018-1150-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11633-018-1150-y