Skip to main content
Log in

On a system of extended general variational inclusions

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

At the present paper, a new system of extended general nonlinear variational inclusions is introduced and using the resolvent operator technique, equivalence between the aforesaid system and the fixed point problem is verified. By using this alternative equivalent formulation, the existence and uniqueness theorem for solution of the system of extended general nonlinear variational inclusions is demonstrated and two new iterative schemes for solving this system of extended general nonlinear variational inclusions are suggested and analyzed. The convergence analysis of the proposed iterative methods under some suitable conditions is studied. Some errors in a recent article by Noor et al. (J Inequal Appl 2011:10, 2011) are found and the incorrectness of the results of the cited paper is proved. Also, the results of the aforementioned paper are revised and corrected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adly S.: Perturbed algorithms and sensitivity analysis for a general class of variational inclusions. J. Math. Anal. Appl. 201, 609–630 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal, R.P., Cho, Y.J., Petrot, N.: Systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces. Fixed Point Theory Appl. 2011, 31 (2011). doi:10.1186/1687-1812-2011-31

  3. Agarwal R.P., Huang N.J., Cho Y.J.: Generalized nonlinear mixed implicit quasi-variational inclusions with set-valued mappings. J. Inequal. Appl. 7, 807–828 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Alimohammady, M., Balooee, J., Cho, Y.J., Roohi, M.: A new system of nonlinear fuzzy variational inclusions involving (A, η)-accretive mappings in uniformly smooth Banach spaces. J. Inequal. Appl. 2009, 33, Article ID 806727 (2009). doi:10.1155/2010/806727

  5. Alimohammady M., Balooee J., Cho Y.J., Roohi M.: New perturbed finite step iterative algorithms for a system of extended generalized nonlinear mixed quasi- variational inclusions. Comput. Math. Appl. 60, 2953–2970 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alimohammady M., Balooee J., Cho Y.J., Roohi M.: Generalized nonlinear random equations with random fuzzy and relaxed cocoercive mappings in Banach spaces. Adv. Nonlinear Var. Inequal. 13, 37–58 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Alimohammady M., Balooee J., Cho Y.J., Roohi M.: Iterative algorithms for a new class of extended general nonconvex set-valued variational inequalities. Nonlinear Anal. 73, 3907–3923 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aubin J.P., Cellina A.: Differential Inclusions. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  9. Brézis H.: Équations et inéquations non linéares dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble) 18, 115–175 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brézis H.: Operateurs Maximaux Monotone et Semigroupes de Contractions dans les Espace d’Hilbert. North-Holland, Amesterdam (1973)

    Google Scholar 

  11. Chang, S.S., Cho, Y.J., Zhou, H.: Iterative Methods for Nonlinear Operator Equations in Banach Spaces. Nova Science Publishers. Inc., Huntington, ISBN: 1-59033-170-2, pp xiv+459 (2002)

  12. Chang S.S., Joseph Lee H.W., Chan C.K.: Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces. Appl. Math. Lett. 20, 329–334 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chidume C.E., Kazmi K.R., Zegeye H.: Iterative approximation of a solution of a general variational-like inclusion in Banach spaces. Int. J. Math. Math. Sci. 22, 1159–1168 (2004)

    Article  MathSciNet  Google Scholar 

  14. Chidume C.E., Zegeye H., Kazmi K.R.: Existence and convergence theorems for a class of multi-valued variational inclusions in Banach spaces. Nonlinear Anal. 59, 649–656 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Cho Y.J., Argyros I.K., Petrot N.: Approximation methods for common solutions of generalized equilibrium, systems of nonlinear variational inequalities and fixed point problems. Comput. Math. Appl. 60, 2292–2301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cho Y.J., Lan H.Y.: A new class of generalized nonlinear multi-valued quasi-variational-like-inclusions with H-monotone mappings. Math. Inequal. Appl. 10, 389–401 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Cho Y.J., Lan H.Y.: Generalized nonlinear random (A, η)-accretive equations with random relaxed cocoercive mappings in Banach spaces. Comput. Math. Appl. 55, 2173–2182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cho Y.J., Petrot N.: Approximate solvability of a system of nonlinear relaxed cocoercive variational inequalities and Lipschitz continuous mappings in Hilbert spaces. Advan. Nonlinear Var. Inequal. 13, 91–101 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Cho Y.J., Qin X.: Generalized systems for relaxed cocoercive variational inequalities and projection methods in Hilbert spaces. Math. Inequal. Appl. 12, 365–375 (2009)

    MathSciNet  Google Scholar 

  20. Cho Y.J., Qin X.: Systems of generalized nonlinear variational inequalities and its projection methods. Nonlinear Anal. 69, 4443–4451 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cho, Y.J., Qin, X., Shang, M.J., Su, Y.F.: Generalized nonlinear variational inclusions involving (A, η)-monotone mappings in Hilbert spaces. Fixed Point Theory Appl. 2007, 6, Article ID 29653 (2007)

  22. Demyanov V.F., Stavroulakis G.E., Polyakova L.N., Panogiotopoulos P.D.: Quasi Differentiability and Nonsmooth Modeling in Mechanics, Engineering and Economics. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  23. Ding X.P.: Perturbed proximal point algorithm for generalized quasi-variational inclusions. J. Math. Anal. Appl. 210, 88–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ding X.P., Luo C.L.: Perturbed proximal point algorithms for generalized quasi-variational-like inclusions. J. Comput. Appl. Math. 113, 153–165 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ding X.P., Xia F.Q.: A new class of completely generalized quasi-variational inclusions in Banach spaces. J. Comput. Appl. Math. 147, 369–383 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ding X.P., Yao J.C.: Existence and algorithm of solutions for mixed quasi-variational-like inclusions in Banach spaces. Comput. Math. Appl. 49, 857–869 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Glowinski R., Lions J.L., Trémolières R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  28. Hassouni A., Moudafi A.: A perturbed algorithm for variational inequalities. J. Math. Anal. Appl. 185, 706–712 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang N.J.: A new class of set-valued implicit variational inclusions in Banach spaces with an application. Comput. Math. Appl. 41, 937–943 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang Z., Noor M.A.: An explicit projection method for a system of nonlinear variational inequalities with different (γ, r)-cocoersive mappings. Appl. Math. Comput. 190, 356–361 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jaillet P., Lamberton D., Lapeyre B.: Variational inequalities and the pricing of American options. Acta Appl. Math. 21, 263–289 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kazmi K.R.: Iterative algorithm for generalized quasi-variational-like inclusions with fuzzy mappings in Banach spaces. J. Comput. Appl. Math. 188, 1–11 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kinderlehrer D., Stampacchia G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  34. Lan H.Y., Kang J.I., Cho Y.J.: Nonlinear (A, η)-monotone operator inclusion systems involving non-monotone set-valued mappings. Taiwan. J. Math. 11, 683–701 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Moreau J.J.: Proximite dualite dans un espaces hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  36. Noor M.A.: On a system of general mixed variational inequalities. Optim. Lett. 3, 437–457 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Noor, M.A., Noor, K.I., Said, E.A.: Resolvent iterative methods for solving system of extended general variational inclusions. J. Inequal. Appl. 2011, 10, Article ID 371241 (2011)

  38. Noor, M.A.: Variational Inequalities and Applications. Lecture Notes, Mathematics Department, COMSATS Institute of information Technology, Islamabad, Pakistan (2007)

  39. Oden J.T.: Qualitative Methods on Nonlinear Mechanics. Prentice-Hall, Englewood Cliffs (1986)

    Google Scholar 

  40. Qin X., Kang J.I., Cho Y.J.: On quasi-variational inclusions and asymptotically pseudo-contractions. J. Nonlinear Convex Anal. 11, 441–453 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Verma R.U.: Generalized system for relaxed cocoercive variational inequalities and projection methods. J. Optim. Theory Appl. 121, 203–210 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Verma R.U.: Projection methods, algorithms, and a new system of nonlinear variational inequalities. Comput. Math. Appl. 41, 1025–1031 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Verma R.U.: General convergence analysis for two-step projection methods and applications to variational problems. Appl. Math. Lett. 18, 1286–1292 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schaible S., Yao J.C., Zeng L.C.: On the convergence analysis of an iterative algorithm for generalized set-valued variational inclusions. J. Nonlinear Convex Anal. 5, 361–368 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Stampacchia G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  46. Yang H., Zhou L., Li Q.: A parallel projection method for a system of nonlinear variational inequalities. Appl. Math. Comput. 217, 1971–1975 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yao Y., Cho Y.J., Liou Y.: Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems. Eur. J. Oper. Res. 212, 242–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zeng L.C., Guu S.M., Yao J.C.: Characterization of H-monotone operators with applications to variational inclusions. Comput. Math. Appl. 50, 329–337 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeol Je Cho.

Additional information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Number: 2011-0021821).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balooee, J., Cho, Y.J. On a system of extended general variational inclusions. Optim Lett 7, 1281–1301 (2013). https://doi.org/10.1007/s11590-012-0503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-012-0503-7

Keywords

Mathematics Subject Classification