Abstract
Efficient and accurate detection of apples is critical for the successful implementation of harvesting robots in orchards. However, due to limited memory resources on robotic platforms, it is imperative to develop lightweight detection algorithms that can operate in real-time. To address this challenge, we propose an ultralight convolutional neural network, U-DPnet, based on depth-separable convolution. Our approach incorporates the cross-stage deep separable module (CDM) and the multi-cascade deep separable module (MDM) in the backbone for nonlinear unit addition and attention mechanisms, which reduce the volume of the network while improving the feature representation capability. A simplified bi-directional feature pyramid network (BiFPN) is constructed in the neck for multi-scale feature fusion, and Adaptive feature propagation (AFP) is designed between the neck and the backbone for smooth feature transitions across different scales. To further reduce the network volume, we develop a uniform channel downsampling and network weight-sharing strategy. Multiple loss functions and label assignment strategies are used to optimize the training process. The performance of U-DPnet is verified on a homemade Apple dataset. Experimental results demonstrate that U-DPnet achieves detection accuracy and speed comparable to that of the 7 SOTA models. Moreover, U-DPnet exhibits an absolute advantage in model volume and computations (only 1.067M Params and 0.563G FLOPs, 39.79% and 36.36% less than yolov5-n).









Similar content being viewed by others
Data availability statement
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
References
Wu, L., Ma, J., Zhao, Y., Liu, H.: Apple detection in complex scene using the improved yolov4 model. Agronomy 11(3), 476 (2021). https://doi.org/10.3390/agronomy11030476
Yan, B., Fan, P., Lei, X., Liu, Z., Yang, F.: A real-time apple targets detection method for picking robot based on improved yolov5. Remote Sens. 13(9), 1619 (2021). https://doi.org/10.3390/rs13091619
Xuan, G., Gao, C., Shao, Y., Zhang, M., Wang, Y., Zhong, J., Li, Q., Peng, H.: Apple detection in natural environment using deep learning algorithms. IEEE Access 8, 216772–216780 (2020). https://doi.org/10.1109/ACCESS.2020.3040423
Zhang, T., Dai, F.: A review of machine vision based fruit recognition applications (2022)
Gené-Mola, J., Gregorio, E., Guevara, J., Auat, F., Sanz-Cortiella, R., Escolà, A., Llorens, J., Morros, J.-R., Ruiz-Hidalgo, J., Vilaplana, V., et al.: Fruit detection in an apple orchard using a mobile terrestrial laser scanner. Biosyst. Eng. 187, 171–184 (2019). https://doi.org/10.1016/j.biosystemseng.2019.08.017
Naranjo-Torres, J., Mora, M., Hernández-García, R., Barrientos, R.J., Fredes, C., Valenzuela, A.: A review of convolutional neural network applied to fruit image processing. Appl. Sci. 10(10), 3443 (2020). https://doi.org/10.3390/app10103443
Wan, S., Goudos, S.: Faster r-cnn for multi-class fruit detection using a robotic vision system. Comput. Netw. 168, 107036 (2020). https://doi.org/10.1016/j.comnet.2019.107036
Chen, J., Yuan, Z., Peng, J., Chen, L., Huang, H., Zhu, J., Liu, Y., Li, H.: Dasnet: dual attentive fully convolutional siamese networks for change detection in high-resolution satellite images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14, 1194–1206 (2020). https://doi.org/10.1109/JSTARS.2020.3037893
Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liang, Q., Zhu, W., Long, J., Wang, Y., Sun, W., Wu, W.: A real-time detection framework for on-tree mango based on ssd network. In: Intelligent Robotics and Applications: 11th International Conference, ICIRA 2018, Newcastle, NSW, Australia, August 9–11, 2018, Proceedings, Part II 11, pp. 423–436 (2018). https://doi.org/10.1007/978-3-319-97589-4_36. Springer
Kang, H., Zhou, H., Chen, C.: Visual perception and modeling for autonomous apple harvesting. IEEE Access 8, 62151–62163 (2020). https://doi.org/10.1109/ACCESS.2020.2984556
Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., Lu, T., Luo, P., Shao, L.: Pvt v2: improved baselines with pyramid vision transformer. Comput. Vis. Media 8(3), 415–424 (2022). https://doi.org/10.1007/s41095-022-0274-8
Liu, J., Jia, R., Li, W., Ma, F., Abdullah, H.M., Ma, H., Mohamed, M.A.: High precision detection algorithm based on improved retinanet for defect recognition of transmission lines. Energy Rep. 6, 2430–2440 (2020). https://doi.org/10.1016/j.egyr.2020.09.002
Ji, W., Gao, X., Xu, B., Pan, Y., Zhang, Z., Zhao, D.: Apple target recognition method in complex environment based on improved yolov4. J. Food Process Eng. 44(11), 13866 (2021). https://doi.org/10.1111/jfpe.13866
Zhou, J., Hu, W., Zou, A., Zhai, S., Liu, T., Yang, W., Jiang, P.: Lightweight detection algorithm of kiwifruit based on improved yolox-s. Agriculture 12(7), 993 (2022). https://doi.org/10.3390/agriculture12070993
Zheng, Y.-Y., Kong, J.-L., Jin, X.-B., Wang, X.-Y., Su, T.-L., Zuo, M.: Cropdeep: the crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 19(5), 1058 (2019). https://doi.org/10.3390/s19051058
Fragapane, G., De Koster, R., Sgarbossa, F., Strandhagen, J.O.: Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. Eur. J. Oper. Res. 294(2), 405–426 (2021). https://doi.org/10.1016/j.ejor.2021.01.019
Kang, H., Chen, C.: Fruit detection, segmentation and 3d visualisation of environments in apple orchards. Comput. Electron. Agric. 171, 105302 (2020). https://doi.org/10.1016/j.compag.2020.105302
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018). https://doi.org/10.48550/arXiv.1801.04381
Wang, D., He, D.: Channel pruned yolo v5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning. Biosyst. Eng. 210, 271–281 (2021)
Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020). https://doi.org/10.1109/CVPR42600.2020.01079
Wang, C.-Y., Liao, H.-Y.M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., Yeh, I.-H.: Cspnet: a new backbone that can enhance learning capability of cnn. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390–391 (2020). https://doi.org/10.48550/arXiv.1911.11929
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018). https://doi.org/10.48550/arXiv.1803.01534
Yu, G., Chang, Q., Lv, W., Xu, C., Cui, C., Ji, W., Dang, Q., Deng, K., Wang, G., Du, Y., Lai, B., Liu, Q., Hu, X., Yu, D., Ma, Y.: PP-PicoDet: a better real-time object detector on mobile devices (2021). https://doi.org/10.48550/arXiv.2111.00902
Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021. arXiv:2107.08430 (2021)
Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: Varifocalnet: an iou-aware dense object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8514–8523 (2021)
Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-iou loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12993–13000 (2020)
Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Tang, J., Yang, J.: Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. Adv. Neural Inf. Process. Syst. 33, 21002–21012 (2020)
Authors, P.: PaddleDetection, object detection and instance segmentation toolkit based on PaddlePaddle. https://github.com/PaddlePaddle/PaddleDetection (2019)
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V 13, pp. 740–755 (2014). Springer
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. (2017)
Long, X., Deng, K., Wang, G., Zhang, Y., Dang, Q., Gao, Y., Shen, H., Ren, J., Han, S., Ding, E., Wen, S.: PP-YOLO: an effective and efficient implementation of object detector (2020). https://doi.org/10.48550/arXiv.2007.12099
Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021. arXiv:2107.08430 (2021). https://doi.org/10.48550/arXiv.2107.08430
Zili Liu, T.Z., Xu, G., Yang, Z., Liu, H., Cai, D.: Training-time-friendly network for real-time object detection. arXiv:1909.00700 (2019). https://doi.org/10.1609/aaai.v34i07.6838
Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv:2207.02696 (2022). https://doi.org/10.48550/arXiv.2207.02696
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest/Conflict of interest:
The authors declare that the publication of this paper has no conflicts of interest/Conflict of interest.
Ethics approval:
None.
Consent to participate:
Confirm.
Consent for publication:
Confirm.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wan, H., Zeng, X., Fan, Z. et al. U-DPnet: an ultralight convolutional neural network for the detection of apples in orchards. J Real-Time Image Proc 20, 76 (2023). https://doi.org/10.1007/s11554-023-01330-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11554-023-01330-7