Skip to main content
Log in

On the efficiency and accuracy of the single equivalent moving dipole method to identify sites of cardiac electrical activation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We have proposed an algorithm to guide radiofrequency catheter ablation procedures. This algorithm employs the single equivalent moving dipole (SEMD) to model cardiac electrical activity. The aim of this study is to investigate the optimal time instant during the cardiac cycle as well as the number of beats needed to accurately estimate the location of a pacing site. We have evaluated this algorithm by pacing the ventricular epicardial surface and inversely estimating the locations of pacing electrodes from the recorded body surface potentials. Two pacing electrode arrays were sutured on the right and left ventricular epicardial surfaces in swine. The hearts were paced by the electrodes sequentially at multiple rates (120–220 bpm), and body surface ECG signals from 64 leads were recorded for the SEMD estimation. We evaluated the combined error of the estimated interelectrode distance and SEMD direction at each time instant during the cardiac cycle, and found the error was minimum when the normalized root mean square (RMS n ) value of body surface ECG signals reached 15 % of its maximum value. The beat-to-beat variation of the SEMD locations was significantly reduced (p < 0.001) when estimated at 15 % RMS n compared to the earliest activation time (EAT). In addition, the 5–95 % interval of the estimated interelectrode distance error decreased exponentially as the number of beats used to estimate a median beat increased. When the number of beats was 4 or larger, the 5–95 % interval was smaller than 3.5 mm (the diameter of a commonly used catheter). In conclusion, the optimal time for the SEMD estimation is at 15 % of RMS n , and at that time instant a median beat estimated from 4 beats is associated with a beat-to-beat variability of the SEMD location that is appropriate for catheter ablation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armoundas AA, Feldman AB, Sherman DA, Cohen RJ (2001) Applicability of the single equivalent point dipole model to represent a spatially distributed bio-electrical source. Med Biol Eng Comput 39:562–570

    Article  CAS  PubMed  Google Scholar 

  2. Armoundas AA, Feldman AB, Mukkamala R, Cohen RJ (2003) A single equivalent moving dipole model: an efficient approach for localizing sites of origin of ventricular electrical activation. Ann Biomed Eng 31:564–576

    Article  PubMed  Google Scholar 

  3. Armoundas AA, Feldman AB, Mukkamala R, He B, Mullen TJ, Belk PA, Lee YZ, Cohen RJ (2003) Statistical accuracy of a moving equivalent dipole method to identify sites of origin of cardiac electrical activation. IEEE Trans Biomed Eng 50:1360–1370

    Article  PubMed  Google Scholar 

  4. Berger T, Fischer G, Pfeifer B, Modre R, Hanser F, Trieb T, Roithinger FX, Stuehlinger M, Pachinger O, Tilg B, Hintringer F (2006) Single-beat noninvasive imaging of cardiac electrophysiology of ventricular pre-excitation. J Am Coll Cardiol 48:2045–2052

    Article  PubMed  Google Scholar 

  5. Cheng LK, Sands GB, French RL, Withy SJ, Wong SP, Legget ME, Smith WM, Pullan AJ (2005) Rapid construction of a patient-specific torso model from 3D ultrasound for non-invasive imaging of cardiac electrophysiology. Med Biol Eng Comput 43:325–330

    Article  CAS  PubMed  Google Scholar 

  6. Fukuoka Y, Armoundas AA, Oostendorp TF, Cohen RJ (2000) Accuracy of a single equivalent moving dipole model in a realistic anatomic geometry torso model. Comput Cardiol 27:439–442

    CAS  PubMed  Google Scholar 

  7. Fukuoka Y, Oostendorp TF, Cohen RJ, Armoundas AA (2001) A simulation study on a catheter navigation method for guiding the ablative therapy of cardiac arrhythmias. In 2001-Conference-Proceedings-of-the-23rd-Annual-International-Conference-of-the-IEEE-Engineering-in-Medicine-and-Biology-Society, Instanbul, pp 402–404

  8. Fukuoka Y, Oostendorp TF, Sherman DA, Armoundas AA (2006) Applicability of the single equivalent moving dipole model in an infinite homogeneous medium to identify cardiac electrical sources: a computer simulation study in a realistic anatomic geometry torso model. IEEE Trans Biomed Eng 53:2436–2444

    Article  PubMed  Google Scholar 

  9. Fukuoka Y, Oostendorp TF, Armoundas AA (2009) Method for guiding the ablation catheter to the ablation site: a simulation and experimental study. Med Biol Eng Comput 47:267–278

    Article  PubMed  Google Scholar 

  10. Gornick CC, Adler SW, Pederson B, Hauck J, Budd J, Schweitzer J (1999) Validation of a new noncontact catheter system for electro anatomic mapping of left ventricular endocardium. Circulation 99:829–835

    Article  CAS  PubMed  Google Scholar 

  11. Ilg K, Baman TS, Gupta SK, Swanson S, Good E, Chugh A, Jongnarangsin K, Pelosi F Jr, Crawford T, Oral H, Morady F, Bogun F (2010) Assessment of radiofrequency ablation lesions by CMR imaging after ablation of idiopathic ventricular arrhythmias. JACC Cardiovasc Imaging 3:278–285

    Article  PubMed  Google Scholar 

  12. Modre R, Tilg B, Fischer G, Hanser F, Messnarz B, Seger M, Schocke MF, Berger T, Hintringer F, Roithinger FX (2003) Atrial noninvasive activation mapping of paced rhythm data. J Cardiovasc Electrophysiol 14:712–719

    Article  PubMed  Google Scholar 

  13. Nademanee K, Kosar EM (1998) A nonfluoroscopic catheter-based mapping technique to ablate focal ventricular tachycardia. Pacing Clin Electrophysiol 21:1442–1447

    Article  CAS  PubMed  Google Scholar 

  14. Okishige K, Kawabata M, Umayahara S, Yamashiro K, Gotoh M, Isobe M, Strickberger SA (2003) Radiofrequency catheter ablation of various kinds of arrhythmias guided by virtual electrograms using a noncontact, computerized mapping system. Circ J 67:455–460

    Article  PubMed  Google Scholar 

  15. Ramanathan C, Ghanem RN, Jia P, Ryu K, Rudy Y (2004) Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med 10:422–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramanathan C, Jia P, Ghanem R, Ryu K, Rudy Y (2006) Activation and repolarization of the normal human heart under complete physiological conditions. Proc Natl Acad Sci USA 103:6309–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schilling RJ, Peters NS, Davies DW (1999) Feasibility of a noncontact catheter for endocardial mapping of human ventricular tachycardia. Circulation 99:2543–2552

    Article  CAS  PubMed  Google Scholar 

  18. Schmitt C, Zrenner B, Schneider M, Karch M, Ndrepepa G, Deisenhofer I, Weyerbrock S, Schreieck J, Schomig A (1999) Clinical experience with a novel multielectrode basket catheter in right atrial tachycardias. Circulation 99:2414–2422

    Article  CAS  PubMed  Google Scholar 

  19. Smith JM, Clancy EA, Valeri CR, Ruskin JN, Cohen RJ (1988) Electrical alternans and cardiac electrical instability. Circulation 77:110–121

    Article  CAS  PubMed  Google Scholar 

  20. Smith NP, Buist ML, Pullan AJ (2003) Altered T wave dynamics in a contracting cardiac model. J Cardiovasc Electrophysiol 14:S203–S209

    Article  PubMed  Google Scholar 

  21. Sohn K, Lv W, Lee K, Galea AM, Hirschman GB, Hayward AM, Cohen RJ, Armoundas AA (2013) The single equivalent moving dipole model does not require spatial anatomical information to determine cardiac sources of activation. IEEE J Biomed Health Inform 18:222–230

    Article  Google Scholar 

  22. Sohn K, Lv W, Lee K, Galea A, Hirschman G, Barrett C, Cohen RJ, Armoundas AA (2014) A method to noninvasively identify cardiac bioelectrical sources. Pacing Clin Electrophysiol 37:1038–1050

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stevenson WG, Delacretaz E (2000) Radiofrequency catheter ablation of ventricular tachycardia. Heart 84:553–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stevenson WG, Sager PT, Natterson PD, Saxon LA, Middlekauff HR, Wiener I (1995) Relation of pace mapping QRS configuration and conduction delay to ventricular tachycardia reentry circuits in human infarct scars. J Am Coll Cardiol 26:481–488

    Article  CAS  PubMed  Google Scholar 

  25. Stevenson WG, Delacretaz E, Friedman PL, Ellison KE (1998) Identification and ablation of macro reentrant ventricular tachycardia with the CARTO electro anatomical mapping system. Pacing Clin Electrophysiol 21:1448–1456

    Article  CAS  PubMed  Google Scholar 

  26. Stevenson WG, Friedman PL, Kocovic D, Sager PT, Saxon LA, Pavri B (1998) Radiofrequency catheter ablation of ventricular tachycardia after myocardial infarction. Circulation 98:308–314

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Cuculich PS, Zhang J, Desouza KA, Vijayakumar R, Chen J, Faddis MN, Lindsay BD, Smith TW, Rudy Y (2011) Noninvasive electro anatomic mapping of human ventricular arrhythmias with electrocardiographic imaging. Sci Trans Med 3:98ra84

    Google Scholar 

  28. Zhang X, Ramachandra I, Liu Z, Muneer B, Pogwizd SM, He B (2005) Noninvasive three-dimensional electrocardiographic imaging of ventricular activation sequence. Am J Physiol Heart Circ Physiol 289:H2724–H2732

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by NIH grant 1RO1HL103961.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis A. Armoundas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, K., Armoundas, A.A. On the efficiency and accuracy of the single equivalent moving dipole method to identify sites of cardiac electrical activation. Med Biol Eng Comput 54, 1611–1619 (2016). https://doi.org/10.1007/s11517-015-1437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1437-x

Keywords