Abstract
This paper introduces human energy harvesting medium access control (MAC) protocol (HEH-BMAC), a hybrid polling MAC suitable for wireless body area networks powered by human energy harvesting. The proposed protocol combines two different medium access methods, namely polling (ID-polling) and probabilistic contention access, to adapt its operation to the different energy and state (active/inactive) changes that the network nodes may experience due to their random nature and the time variation of the energy harvesting sources. HEH-BMAC exploits the packet inter-arrival time and the energy harvesting rate information of each node to implement an efficient access scheme with different priority levels. In addition, our protocol can be applied dynamically in realistic networks, since it is adaptive to the topology changes, allowing the insertion/removal of wireless sensor nodes. Extensive simulations have been conducted in order to evaluate the protocol performance and study the throughput and energy tradeoffs.














Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
\(802.15. 6^{{\rm TM}}\)-2012 IEEE Stds. (2012). Standard for local and metropolitan area networks: Part 15.6: Wireless Body Area Networks.
11073 ISO/IEEE Stds. (2008). Health informatics PoC medical device communication, Part 00101: Guide–guidelines for the use of RF wireless technology (pp. 25-27). Piscataway: IEEE.
Ameen, M. A., Ullah, N., Chowdhury, M., Islam, S., & Kwak, K. (2012). A power efficient MAC protocol for wireless body area networks. EURASIP Journal on Wireless Communications and Networking. doi:10.1186/1687-1499-2012-33.
Balpande, S., Lande, S., & Rungta, S. (2009). Modeling of PZT based power harvester and power control approach for pervasive node BSN. In Proceedings of the 2009 IEEE International Advance Computing Conference (IACC), 6–7 March (pp. 327–332).
Boulis, A., & Tselishchev, Y. (2010). Contention vs. Polling: A study in body area networks MAC design. In Proceedings of the \(7{\rm th}\) International Conference on Body Area Networks (BodyNets), 10–12 Sep. (pp. 98–104).
Chen, B., & Pompili, D. (2011). Transmission of patient vital signs using wireless body area networks. Journal of Mobile Networks and Application, 16(6), 663–682.
Chen, X., Xu, S., Yao, N., & Shi, Y. (2010). 1.6V nanogenerator for mechanical energy harvesting using PZT nanofibers. Journal of Nano letters, 10(6), 2133–2137.
Dargie, W., Chao, X., & Denko, M. (2011). Modeling the energy cost of a fully operational wireless sensor network. Journal of Telecommunication Systems, 44(1–2), 3–15.
Drude, S. (2007). Requirements and application scenarios for body area networks. In Proceedings of the \(16^{{\rm th}}\) Mobile and Wireless Communications Summit IST, 1–5 July (pp. 1–5).
Eu, Z. A., & Tan, H.-P. (2012) Probabilistic polling for multi-hop energy harvesting wireless sensor networks. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), 10–15 June (pp. 271–275).
Eu, Z. A., Tan, H.-P., & Seah, W. K. G. (2011). Design and performance analysis of MAC schemes for wireless sensor networks powered by ambient energy harvesting. Journal of Ad Hoc Networks, 9(3), 300–323.
Fang, G., & Dutkiewicz, E. (2009). BodyMAC: Energy efficient TDMA-based MAC protocol for wireless body area networks. In Proceedings of the \(9{\rm th}\) International Symposium on Communications and Information Technology (ISCIT), 28–30 Sept. (pp. 1455–1459).
Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Journal of Telecommunication Systems. doi:10.1007/s11235-011-9568-3.
Gopalan, S. A., & Park J.-T. (2010). Energy-efficient MAC protocols for wireless body area networks: survey. In Proceedings of the 2010 International Congress on Ultra Modern Telecommunications and Control Systems (ICUMT), 18–20 Oct. (pp. 739–744).
Gregori, M., & Payaro, M. (2011). Efficient data transmission for energy harvesting node with battery capacity constraint. In Proceedings of the 2011 IEEE Global Communications Conference (GLOBECOM), 5–9 Dec. (pp. 1–6).
Hansen, B. J., Liu, Y., & Wang, Z. L. (2010). Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. Journal of American Chemical Society, 4(7), 3647–3652.
He, Y., Zhu, W., & Guan, L. (2011). Optimal resource allocation for pervasive health monitoring systems with body sensor networks. IEEE Journal of Transactions On Mobile Computing, 10(11), 1558–1575.
Hoang, D., & Tan, Y. (2009). Thermal energy harvesting from human warmth for wireless body area network in medical healthcare system. In Proceedings of the 2009 International Conference on Power Electronics and Drive Systems (PEDS), 2–5 Nov. (pp. 1277–1282).
Khan, J., Yuce, M., & Karami, F. (2008). Performance evaluation of a wireless body area sensor network for remote patient monitoring. In Proceedings of the \(30{\rm th}\) International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE-EMBS), 20–25 Aug. (pp. 1266–1269).
Latré, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2011). A survey on wireless body area networks. Journal of Wireless Networks, 17(1), 1–18.
Li, H., Chan, E., & Chen, G. (2010). AEETC—adaptive energy-efficient timing control in wireless networks with network coding. Journal of Telecommunication Systems, 45(4), 289–301.
Lim, J. C., & Bleakley, C. J. (2011). Trading sensing coverage for an extended network lifetime. Journal of Telecommunication Systems. doi:10.1007/s11235-011-9595-0.
Lossec, M., Multon, B., Ahmed, H. B., & Goupil, C. (2010). Thermoelectric generator placed on the human body: System modeling and energy conversion improvements. The European Physical Journal Applied Physics, 52(1), 11103(1)–11103(10).
Marinkovic, S. J., Popovici, E., Spagnol, C., Faul, S., & Marnane, W. P. (2009). Energy-efficient low duty cycle MAC protocol for wireless body area network. IEEE Journal of Transactions on Information Technology in Biomedicine., 13(6), 915–925.
Markys, C. (2010). State of art in human powering devices. Journal of Energy Harvesting, Resource document. In Proceedings of the \(1^{{\rm st}}\) Energy Harvesting Research Theme Workshop, 9 November. http://eh-network.org/events/workshop1/slides1.pdf. Accessed 12 July 2012
Otal, B., Alonso, L., & Verikoukis, C. (2009). Highly reliable energy saving MAC for wireless body sensor networks in healthcare systems. IEEE Journal on Selected Areas in Communications, 27(4), 553–565.
Ozel, O., Tutuncuoglu, K., Yang, J., Ulukus, S., & Yener, A. (2011). Transmission with energy harvesting nodes in fading wireless channels: Optimal policies. IEEE journal on Selected Areas in Communication, 29(8), 1732–1743.
Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In Proceedings of the 2004 ACM Conference on Embedded Networked Sensor Systems (ACM SenSys), 3–5 Nov. (pp. 95–107).
Rapoport, B. I., Kedsierski, J. T., & Sarpeeshkar, R. (2012). A glucose fuel cell for implantable brain-machine interfaces. Journal of Plos One, 7(6), 1–15.
Renner, C., Jessen, J., & Tarau, V. (2009). Lifetime prediction for supercapacitor-powered wireless sensor nodes. In Proceedings of the \(8{\rm th}\) GI/ITG KuVS Fachgespräch “Drahtlose Sensornetze” (FGSN’09), 13 Aug. (pp. 55–58).
Rodoplu, V., & Meng, T. H. (2007). Bits-per-joule capacity of energy-limited wireless networks. In proceedings of IEEE Transactions on Wireless Communications, 6(3), 857–865.
Seah, W. K. G., Eu, Z. A., & Tan, H.-P. (2009). Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP)- survey and challenges. In Proceedings of the \(1{\rm st}\) International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), 17–20 May (pp. 1–5).
Seyedi, A., & Sikdar, B. (2010). Energy efficient transmission strategies for body sensor networks with energy harvesting. IEEE Journal of Transactions on Communications, 58(7), 2116–2126.
Seyedi, A., & Sikdar, B. (2008). Modeling and analysis of energy harvesting nodes in body sensor networks. In Proceedings of the \(5{\rm th}\) International Workshop on Wearable and Implantable Body Sensor Networks (BSN), 1–3 June (pp. 175–178).
Simjee, F., & Chou, P.H. (2006). Everlast: long-life, supercapacitor-operated wireless sensor node. In Proceedings of the 2006 International Symposium on Low Power Electronics and Design (ISLPED), 4–6 Oct. (pp. 197–202).
Tachtatzis, C., Di Franco, F., Tracey, D., Timmons N., & Morrison, J. An energy analysis of IEEE 802.15.6 scheduled access modes. In Proceedings of the 2010 IEEE Global Communications Conference (GLOBECOM), 6–10 Dec. (pp. 1270–1275).
Timmons, N. F., & Scanlon, W. G. (2009). An adaptive energy efficient MAC protocol for the medical body area networks. In Proceedings of the \(1{\rm st}\) Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), 17–20 May (pp. 587–593).
Van Dam, T., & Langendoen, K. (2003). An adaptive energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the 2003 ACM Conference on Embedded Networked Sensor Systems (ACM SenSys), 5–7 Nov. (pp. 171–180).
Ventura, J., Chowdhury, K. (2011). Markov Modeling of Energy Harvesting Body Sensor Networks. In Proceedings of the \(21^{{\rm nd}}\) International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 11–14 Sept. (pp. 2168–2172).
Vullers, R. J. M., Schaijk, R. V., Visser, H. J., Penders, J., & Hoof, C. V. (2010). Energy harvesting for autonomous wireless sensor networks. IEEE Journal of Solid-State Circuits, 2(2), 29–38.
Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the \(21{\rm th}\) IEEE International Conference on Computer Communications (INFOCOM), 23–27 June (pp. 1567–1576).
Yildiz, F. (2009). Potential ambient energy-harvesting sources and techniques. Journal of Technology Studies, 35(1), 40–48.
Acknowledgments
This work has been funded by the research projects CO2Green (TEC2010-20823), WSN4QoL (PIAP-GA-2011-286047), ENIAC ARTEMOS (EUI2010-04252 and EUI2011-4349) and Grant SENACYT-IFARHU (270-2009-173).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ibarra, E., Antonopoulos, A., Kartsakli, E. et al. HEH-BMAC: Hybrid polling MAC protocol for WBANs operated by human energy harvesting. Telecommun Syst 58, 111–124 (2015). https://doi.org/10.1007/s11235-014-9898-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-014-9898-z