Skip to main content
Log in

Recursive blocked algorithms for linear systems with Kronecker product structure

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Recursive blocked algorithms have proven to be highly efficient at the numerical solution of the Sylvester matrix equation and its generalizations. In this work, we show that these algorithms extend in a seamless fashion to higher-dimensional variants of generalized Sylvester matrix equations, as they arise from the discretization of PDEs with separable coefficients or the approximation of certain models in macroeconomics. By combining recursions with a mechanism for merging dimensions, an efficient algorithm is derived that outperforms existing approaches based on Sylvester solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bader, B.W., Kolda, T.G., et al.: Matlab tensor toolbox version 2.6. Available from http://www.sandia.gov/~tgkolda/TensorToolbox/ (2015)

  2. Bartels, R.H., Stewart, G.W.: Algorithm 432: The solution of the matrix equation AX + XB = C. Commun. ACM 15(9), 820–826 (1972)

    Article  MATH  Google Scholar 

  3. Binning, A.: Solving second and third-order approximations to DSGE models: a recursive Sylvester equation solution. Norges Bank Working Paper 18 (2013)

  4. Chu, E.K.-W.: The solution of the matrix equations AXBCXD = E and (YADZ,YCBZ) = (E,F). Linear Algebra Appl. 93, 93–105 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dayar, T.: Kronecker Modeling and Analysis of Multidimensional Markovian Systems. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  6. Deadman, E., Higham, N.J., Ralha, R.: Blocked Schur Algorithms for Computing the Matrix Square Root. Lecture Notes in Comput Sci, vol. 7782, pp 171–182. Springer, Berlin (2013)

    Google Scholar 

  7. Elmroth, E., Gustavson, F., Jonsson, I., Kågström, B.: Recursive blocked algorithms and hybrid data structures for dense matrix library software. SIAM Rev. 46(1), 3–45 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  9. Granat, R., Kågström, B.: Algorithm 904: The SCASY library – parallel solvers for Sylvester-type matrix equations with applications in condition estimation, part II. ACM Trans. Math. Softw. 37(3), 1–4 (2010)

    MATH  Google Scholar 

  10. Granat, R., Kågström, B: Parallel solvers for Sylvester-type matrix equations with applications in condition estimation, part I Theory and algorithms. ACM Trans. Math. Softw. 37(3), 1–32 (2010)

    MATH  Google Scholar 

  11. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitt. 36(1), 53–78 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  13. Hammarling, S.: Numerical solution of the stable, nonnegative definite Lyapunov equation. IMA J. Numer. Anal. 2(3), 303–323 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jonsson, I., Kågström, B.: Recursive blocked algorithm for solving triangular systems. I. One-sided and coupled Sylvester-type matrix equations. ACM Trans. Math Software 28(4), 392–415 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jonsson, I., Kågström, B.: Recursive blocked algorithm for solving triangular systems. II. Two-sided and generalized Sylvester and Lyapunov matrix equations. ACM Trans. Math Softw. 28(4), 416–435 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kamenik, O.: Solving SDGE models: a new algorithm for the Sylvester equation. Comput. Econ. 25(1), 167–187 (2005)

    Article  MATH  Google Scholar 

  17. Köhler, M., Saak, J.: On BLAS level-3 implementations of common solvers for (quasi-) triangular generalized Lyapunov equations. ACM Trans. Math. Software 43(1), Art. 3, 23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kressner, D.: Block variants of Hammarling’s method for solving Lyapunov equations. ACM Trans. Math. Software 34(1), 1–15 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product structure. SIAM J Matrix Anal. Appl. 31(4), 1688–1714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, B.-W., Tian, S., Sun, Y.-S., Hu, Z.-M.: Schur-decomposition for 3D matrix equations and its application in solving radiative discrete ordinates equations discretized by Chebyshev collocation spectral method. J. Comput. Phys. 229(4), 1198–1212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moravitz Martin, C.D., Van Loan, C.F.: Shifted Kronecker product systems. SIAM J. Matrix Anal. Appl. 29(1), 184–198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moravitz Martin, C.D., Van Loan, C.F.: Solving real linear systems with the complex Schur decomposition. SIAM J. Matrix Anal. Appl. 29(1), 177–183 (2006/07)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peise, E., Bientinesi, P.: Algorithm 979: recursive algorithms for dense linear algebra—the ReLAPACK collection. ACM Trans. Math. Software 44(2), Art. 16, 19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Quintana-Ortí, E.S., van de Geijn, R. A.: Formal derivation of algorithms: the triangular Sylvester equation. ACM Trans. Math. Software 29(2), 218–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sangalli, G., Tani, M.: Isogeometric preconditioners based on fast solvers for the Sylvester equation. SIAM J. Sci. Comput. 38(6), A3644–A3671 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Simoncini, V.: Computational methods for linear matrix equations. SIAM Rev. 58(3), 377–441 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stewart, G.W.: Stochastic automata, tensors operation, and matrix equations. UMIACS TR-96-11, CMSC TR-3598 (1996)

  30. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  31. Touzene, A.: Approximated tensor sum preconditioner for stochastic automata networks. In: Proceedings 20th IEEE International Parallel Distributed Processing Symposium (2006)

  32. Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123(1–2), 85–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Daniel Kressner sincerely thanks Michael Steinlechner and Christine Tobler for insightful discussions on the algorithms presented in this work and their implementation.

Funding

The work of the first author was financially supported by the National Natural Science Foundation of China (Grant No. 11801513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kressner.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Kressner, D. Recursive blocked algorithms for linear systems with Kronecker product structure. Numer Algor 84, 1199–1216 (2020). https://doi.org/10.1007/s11075-019-00797-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00797-5

Keywords