Skip to main content
Log in

Fisher Discriminative Coupled Dictionaries Learning

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

As a recently proposed technique, dictionary learning (DL) has been extensively studied in the field of pattern recognition. Most scholars use a sparse representation as the basic formula for DL while incorporating other techniques into the DL process for obtain an expected dictionary, and exploring a problem with an \( l_{0} \)-norm or \( l_{1} \)-norm. However, these strategies increase the time complexity and require additional classifier-aided classification work. In this paper, we propose a novel form of DL called Fisher discriminative coupled dictionaries learning based on general dictionary learning. We use an \( l_{2} \)-norm to improve the training speed. On embedding the Fisher discrimination into the process of DL, the updated dictionary contains the discriminant information. We update the sample dictionary and coefficient projection dictionary simultaneously as a “dictionary pair”. The sample dictionary is used directly for image classification. The superiority of the proposed method is proven through exhaustive experiments on the AR, extended Yale-B, Scene 15, and Caltech-101 databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–609. https://doi.org/10.1038/381607a0

    Article  Google Scholar 

  2. Cao JW, Zhang K, Luo MX, Yin C, Lai XP (2016) Ensemble extreme learning machine and adaptive sparse representation for image classification. Neural Netw 81:91–102. https://doi.org/10.1016/j.neunet.2016.06.001

    Article  Google Scholar 

  3. Geng LL, Sun QS, Fu P, Yuan YH (2018) Multi-scale fractional-order sparse representation for image denoising. In: 22nd international conference on neural information processing (ICONIP), vol 9491, pp 462–470. https://doi.org/10.1007/978-3-319-26555-1_52

    Chapter  Google Scholar 

  4. Zhang KS, Zhong L, Zhang XY (2018) Image restoration via group l(2,1) norm-based structural sparse representation. Int J Pattern Recogn 32(4):1854008. https://doi.org/10.1142/S0218001418540083

    Article  MathSciNet  Google Scholar 

  5. Wang D, Lu H, Yang MH (2013) Online object tracking with sparse prototypes. IEEE Trans Image Process 22:314–325. https://doi.org/10.1109/TIP.2012.2202677

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu HP, Qin J, Sun F, Guo D (2017) Extreme kernel sparse learning for tactile object recognition. IEEE Trans Cybern 47:4509–4520. https://doi.org/10.1109/TCYB.2016.2614809

    Article  Google Scholar 

  7. Cao J, Zhao YF, Lai XP et al (2015) Landmark recognition with sparse representation classification and extreme learning machine. J Frankl I 352:4528–4545. https://doi.org/10.1016/j.jfranklin.2015.07.002

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao SH, Tsang WH, Chia LT (2013) Laplacian sparse coding, hypergraph Laplacian sparse coding, and applications. IEEE Trans Pattern Anal Mach Intell 35:92–104. https://doi.org/10.1109/TPAMI.2012.63

    Article  Google Scholar 

  9. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227. https://doi.org/10.1109/TPAMI.2008.79

    Article  Google Scholar 

  10. Feng JF, Ma X, Zhuang WJ (2017) Collaborative representation Bayesian face recognition. Sci China (Inf Sci) 60:048101. https://doi.org/10.1007/s11432-015-0799-4

    Article  Google Scholar 

  11. Jin TS, Liu ZL, Yu ZT, Min XP, Li LL (2016) Locality preserving collaborative representation for face recognition. Neural Process Lett 45:1–13. https://doi.org/10.1007/s11063-016-9558-2

    Article  Google Scholar 

  12. Fang HS, Zhang J (2018) Representations of face images and collaborative representation classification for face recognition. J Circuit Syst Comp 27:1850017. https://doi.org/10.1142/S0218126618500172

    Article  Google Scholar 

  13. Lai J, Jiang XD (2016) Classwise sparse and collaborative patch representation for face recognition. IEEE Trans Image Process 25:3261–3272. https://doi.org/10.1109/TIP.2016.2545249

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang B, Li WF, Poh N, Liao QM (2013) Kernel collaborative representation-based classifier for face recognition. In: 2013 IEEE international conference on acoustics, speech and signal processing, Vancouver (ICASSP), pp 2877–2881. http://doi.org/10.1109/ICASSP.2013.6638183

  15. Li W, Du Q, Xiong MM (2015) Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification. IEEE Geosci Remote Sens 12:48–52. https://doi.org/10.1109/LGRS.2014.2325978

    Article  Google Scholar 

  16. Liu FH, Gong C, Zhou T et al (2017) Visual tracking via nonnegative multiple coding. IEEE Trans Multimed 19:2680–2691. https://doi.org/10.1109/TMM.2017.2708424

    Article  Google Scholar 

  17. Chen X, Li SY, Peng JT (2017) Hyperspectral imagery classification with multiple regularized collaborative representations. IEEE Geosci Remote Sens. https://doi.org/10.1109/LGRS.2017.2699667

    Article  Google Scholar 

  18. Gong C, Tao D, Maybank S et al (2017) Multi-modal curriculum learning for semi-supervised image classification. IEEE Trans Image Process 25:3249–3260. https://doi.org/10.1109/TIP.2016.2563981

    Article  MathSciNet  MATH  Google Scholar 

  19. Rubinstein R, Bruckstein AM, Elad M (2010) Dictionaries for sparse representation modeling. Proc IEEE 98:1045–1057. https://doi.org/10.1109/JPROC.2010.2040551

    Article  Google Scholar 

  20. Chen YK (2017) Fast dictionary learning for noise attenuation of multidimensional seismic data. Geophys J Int 209:ggw492. https://doi.org/10.1093/gji/ggw492

    Article  Google Scholar 

  21. Nejati M, Samavi S, Karimi N et al (2016) Boosted dictionary learning for image compression. IEEE Trans Image Process 25:4900–4915. https://doi.org/10.1109/TIP.2016.2598483

    Article  MathSciNet  MATH  Google Scholar 

  22. Nguyen H, Yang WK, Sheng BY, Sun CY (2016) Discriminative low-rank dictionary learning for face recognition. Neurocomputing 173:541–551. https://doi.org/10.1016/j.neucom.2015.07.031

    Article  Google Scholar 

  23. Jiang ZL, Lin Z, Davis LS (2013) Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Trans Pattern Anal Mach Intell 35:2651–2664. https://doi.org/10.1109/TPAMI.2013.88

    Article  Google Scholar 

  24. Zhang Q, Li BX (2010) Discriminative K-SVD for dictionary learning in face recognition. In: 2010 IEEE computer society conference on computer vision and pattern recognition (CVPR) 2010, pp 2601–2698. http://doi.org/10.1109/CVPR.2010.5539989

  25. Song Y, Cao W, He ZL (2014) Robust iris recognition using sparse error correction model and discriminative dictionary learning. Neurocomputing 137:198–204. https://doi.org/10.1016/j.neucom.2013.06.051

    Article  Google Scholar 

  26. Rubinstein R, Peleg T, Elad M (2013) Analysis K-SVD: a dictionary-learning algorithm for the analysis sparse model. IEEE Trans Signal Proces 61:661–677. https://doi.org/10.1109/TSP.2012.2226445

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang M, Zhang L, Feng XC, Zhang D (2014) Sparse representation based Fisher discrimination dictionary learning for image classification. Int J Comput Vis 109:209–232. https://doi.org/10.1007/s11263-014-0722-8

    Article  MathSciNet  MATH  Google Scholar 

  28. Nguyen T, Binh HTT, Sang DV (2016) A new approach for learning discriminative dictionary for pattern classification. J Inf Sci Eng 32:1113–1127

    MathSciNet  Google Scholar 

  29. Sprechmann P, Sapiro G (2010) Dictionary learning and sparse coding for unsupervised clustering. In: International conference acoustics speech and signal processing (ICASSP), vol 23, pp 2042–2045. http://doi.org/10.1109/ICASSP.2010.5494985

  30. Duda RO, Hart PE, Stork DG (2000) Pattern classification, 2nd edn. Wiley-Interscience, New York

    MATH  Google Scholar 

  31. Wang H, Yan SC, Xu D, Tang XO, Huang T (2007) Trace ratio vs. ratio trace for dimensionality reduction. In: IEEE computer society conference on computer vision and pattern recognition (CVPR) 2007, pp 1–8. https://doi.org/10.1109/CVPR.2007.382983

  32. Song FX, Zhang D, Mei DY, Guo ZW (2007) A multiple maximum scatter difference discriminant criterion for facial feature extraction. IEEE Trans Syst Man Cybern Soc 37:1599–1606. https://doi.org/10.1109/TSMCB.2007.906579

    Article  Google Scholar 

  33. Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17:157–165. https://doi.org/10.1109/TNN.2005.860852

    Article  Google Scholar 

  34. Jia YQ, Nie FP, Zhang CS (2009) Trace ratio problem revisited. IEEE Trans Neural Netw 20:29–735. https://doi.org/10.1109/TNN.2009.2015760

    Article  Google Scholar 

  35. Yang M, Zhang L, Yang J, Zhang D (2010) Metaface learning for sparse representation based face recognition. In: 2010 IEEE international conference on image processing (ICIP) 2010, pp 1601–1604. http://doi.org/10.1109/ICIP.2010.5652363

  36. Martinez AM, Benavente R (1998) The AR face database. Computer Vision Center Technical Report. http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html. Accessed 24 June 1998

  37. Georghiades AS, Belhumeur PN, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal 23:643–660. https://doi.org/10.1109/34.927464

    Article  Google Scholar 

  38. Gu SH, Zhang L, Zuo WM, Feng XC (2014) Projective dictionary pair learning for pattern classification. Adv Neural Inf Process Syst 1:793–801

    Google Scholar 

  39. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE computer society conference on computer vision and pattern recognition (CVPR) 2006, pp 2169–2178. http://www.cs.unc.edu/~lazebnik/publications/cvpr06b.pdf

  40. Li J, Xu C, Yang W, Sun CY, Tao DC (2017) Discriminative multi-view interactive image re-ranking. IEEE Trans Image Process 26:3113–3127. https://doi.org/10.1109/TIP.2017.2651379

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (Grant No. 61771293) and the National Science Foundation of Shandong Province (Grant No. ZR2014FM039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyan Jiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, T., Jiang, M. Fisher Discriminative Coupled Dictionaries Learning. Neural Process Lett 50, 2991–3008 (2019). https://doi.org/10.1007/s11063-019-10015-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-019-10015-x

Keywords