Skip to main content
Log in

Reversible data hiding for 3D mesh models with hybrid prediction and multilayer strategy

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel reversible data hiding (RDH) method for 3D mesh models using hybrid prediction scheme and multilayer strategy. In our prediction scheme, the prediction context is determined by the uniformity of mesh region, which means that full context and partial context are used for uniform region and nonuniform region, respectively. This kind of content-dependent prediction can further exploited vertex-vertex correlations to achieve better prediction accuration. Meanwhile, a multilayer strategy with overlapping partition is used to make a trade-off between important requirements: the embedding capacity should be large and distortion should be low. Compared with non-overlapping partition, it keeps not only the prediction context intact but also more capacity available in one pass embedding. In addition, the threshold is adaptively selected considering the magnitude of prediction errors such that the embedding distortion is reduced when embed the secret data into 3D mesh models. Experimental results also validate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  2. Arham A, Nugroho HA, Adji TB (2017) Multiple layer data hiding scheme based on difference expansion of quad. Signal Process 137:52–62

    Article  Google Scholar 

  3. Caldelli R, Filippini F, Becarelli R Reversible watermarking techniques: an overview and a classification. EURASIP J Inf Secur 2010, 2010:2

  4. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 14(2):253–266

    Article  Google Scholar 

  5. Chen C-C, Tsai Y-H, Yeh H-C (2017) Difference-expansion based reversible and visible image watermarking scheme. Multimed Tools Appl 76(6):8497–8516

    Article  Google Scholar 

  6. Chuang CH, Cheng CW, Yen ZY (2010) Reversible Data Hiding With Affine Invariance For 3D Models. 2010 IET Int Conf Front Comput Theory, Technol Appl: 77–81

  7. Dittmann J, Benedens O (2003) Invertible authentication for 3d-meshes. Sec Watermark Multimed Contents V:653–664

    Article  Google Scholar 

  8. Dragoi I-C, Coltuc D (2014) Local-prediction-based difference expansion reversible watermarking. IEEE Trans Image Process 23(4):1779–1790

    Article  MathSciNet  Google Scholar 

  9. Fridrich AJ, Goljan M, Du R (2002) Lossless data embedding for all image formats. Proc SPIE - Int Soc Optic Eng 4675:572–583

    Article  Google Scholar 

  10. Gao X, An L, Li X, Tao D (2009) Reversibility improved lossless data hiding. Signal Process 89(10):2053–2065

    Article  Google Scholar 

  11. Huang Y-H, Tsai Y-Y (2015) A reversible data hiding scheme for 3D polygonal models based on histogram shifting with high embedding capacity. 3D Res 6(2):1–12

    Article  Google Scholar 

  12. Jhou C-Y, Pan J-S, Chou D (2007) Reversible data hiding base on histogram shift for 3D vertex In: 3rd International Conference on International Information Hiding and Multimedia Signal Process, IIHMSP 2007, IEEE Computer Society, Kaohsiung, Taiwan: 365–368

  13. Jiang R, Zhang W, Hou D, Wang H, Yu N (2018) Reversible data hiding for 3D mesh models with three-dimensional prediction-error histogram modification. Multimed Tools Appl 77(5):5263–5280

    Article  Google Scholar 

  14. Kamstra L, Heijmans HJ (2005) Reversible data embedding into images using wavelet techniques and sorting. IEEE transactions on image processing a publication of the IEEE signal processing. IEEE Trans Image Process Publ IEEE Signal Process Soc 14(12):2082–2090

    Article  Google Scholar 

  15. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20(12):3524–3533

    Article  MathSciNet  Google Scholar 

  16. Li X, Li B, Yang B, Zeng T (2013) A general framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process Publ IEEE Signal Process Soc 22(6):2181–2191

    Article  MathSciNet  Google Scholar 

  17. Li X, Zhang W, Ou B, Yang B (2014) A brief review on reversible data hiding: current techniques and future prospects. IEEE Chin Sum Int Conf Signal Info Process: 426–430

  18. Lu Z-M, Li Z (2008) High capacity reversible data hiding for 3D meshes in the PVQ domain. Digital watermarking. Springer: 233–243

  19. Ma X, Pan Z, Hu S, Wang L (2015) High-fidelity reversible data hiding scheme based on multi-predictor sorting and selecting mechanism. J Visual Commun Image Rep 28(C):71–82

    Article  Google Scholar 

  20. Ni Z, Shi Y-Q, Ansari N, Su W (2006) Reversible data hiding. IEEE Tran Circ Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  21. Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circ Syst Video Technol 19(7):989–999

    Article  Google Scholar 

  22. Shi YQ, Ni Z, Zou D, Liang C (2004) Lossless data hiding: fundamentals, algorithms and applications. Int Sym Circ Syst 32:II-33–II-36

    Google Scholar 

  23. Thodi DM, Rodríguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730

    Article  MathSciNet  Google Scholar 

  24. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Techn 13(8):890–896

    Article  Google Scholar 

  25. Tsai P, Hu YC, Yeh HL (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89(6):1129–1143

    Article  Google Scholar 

  26. Wang J, Ni J, Hu Y (2014) An efficient reversible data hiding scheme using prediction and optimal side information selection. J Visual Commun Image Rep 25(6):1425–1431

    Article  Google Scholar 

  27. Wu H-T, Cheung Y-M (2005) A reversible data hiding approach to mesh authentication. In: The 2005 IEEE/WIC/ACM International Conference on Web Intelligence, 2005. Proceedings. IEEE: 774–777

  28. Wu H-T, Dugelay J-L (2008) Reversible watermarking of 3D mesh models by prediction-error expansion. In: 2008 IEEE 10th workshop on multimedia Signal Process: 797–802

  29. Wu D, Wang G (2009) A reversible watermarking scheme for 3D meshes. Active Media Technology. Springer, pp 513–521

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for their valuable comments and suggestions, which improved the technical content and the presentation of the paper. This research is supported by the National Nature Science Foundation of China (61772101, 61170169, 61602075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Song, X., Wen, T. et al. Reversible data hiding for 3D mesh models with hybrid prediction and multilayer strategy. Multimed Tools Appl 78, 29713–29729 (2019). https://doi.org/10.1007/s11042-018-6219-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6219-7

Keywords