Skip to main content
Log in

The Effects of Climatological Factors on Global Influenza Across Temperate and Tropical Regions

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Recently, global epidemic models that use climatological factors have been proposed to explain influenza activities for both temperate and tropical regions. In this paper, these global models were extended by including interactions of climatological factors. This study was aimed to estimate the relative benefits of such interactions in explaining the global influenza epidemics. The effects of four climatological factors on laboratory-confirmed influenza cases were investigated, i.e., weekly temperature, precipitation, absolute humidity and relative humidity. It was found that countries in Europe and Australia have higher forecast skill, indicating the stronger relationship of influenza with climatological factors, than regions in other continents. The influenza activities of 47 (83%) countries can be explained with a closer match using multi-factor interactions along with original factors than only using the original factors. The temperate countries are characterized by the interaction of factors of temperature and absolute/relative humidity. In contrast, the interaction of factors of precipitation and absolute/relative humidity are dominant in tropical countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Azziz Baumgartner E, Dao CN, Nasreen S, Bhuiyan MU, Mah-E-Muneer S, Mamun AA, Sharker MY, Zaman RU, Cheng PY, Klimov AI et al (2012) Seasonality, timing, and climate drivers of influenza activity worldwide. The Am J Infect Dis 206(6):838– 846

    Article  Google Scholar 

  2. Cannell J, Vieth R, Umhau J, Holick M, Grant W (2006) Epidemic influenza and vitamin d epidemiol infect

  3. Cauchemez S, Valleron AJ, Boelle PY, Flahault A, Ferguson NM (2008) Estimating the impact of school closure on influenza transmission from sentinel data. Nature 452(7188):750–754

    Article  Google Scholar 

  4. Dave K, Lee PC (2019) Global geographical and temporal patterns of seasonal influenza and associated climatic factors. Epidemiol Rev 41(1):51–68

  5. Deyle ER, Maher MC, Hernandez RD, Basu S, Sugihara G (2016) Global environmental drivers of influenza. Proc Natl Acad Sci 113(46):13081–13086

    Article  Google Scholar 

  6. Deyle ER, Sugihara G (2011) Generalized theorems for nonlinear state space reconstruction. PLoS One 6(3):e18295

    Article  Google Scholar 

  7. Dixon PA, Milicich MJ, Sugihara G (1999) Episodic fluctuations in larval supply. Science 283(5407):1528–1530

    Article  Google Scholar 

  8. Dowell SF (2001) Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg Infect Dis 7(3):369

    Article  Google Scholar 

  9. Finkelman BS, Viboud C, Koelle K, Ferrari MJ, Bharti N, Grenfell BT (2007) Global patterns in seasonal activity of influenza a/h3n2, a/h1n1, and b from 1997 to 2005: viral coexistence and latitudinal gradients. PloS one 2(12):e1296

    Article  Google Scholar 

  10. Huang B, Yang R, Jia B, Li W, Mao G (2021) A theoretical analysis on sampling size in wifi fingerprint-based localization. IEEE Trans Veh Technol PP(99):1–1

    Google Scholar 

  11. Jóhannesson T, Jónsson T, Källén E, Kaas E (1995) Climate change scenarios for the nordic countries. Clim Res 5(3):181–195

  12. Karagiannidis AF, Karacostas T, Maheras P, Makrogiannis T (2012) Climatological aspects of extreme precipitation in europe, related to mid-latitude cyclonic systems. Theor Appl Climatol 107(1-2):165–174

    Article  Google Scholar 

  13. Lipsitch M, Viboud C (2009) Influenza seasonality: lifting the fog. Proc Natl Acad Sci 106 (10):3645–3646

    Article  Google Scholar 

  14. Liu Y, Huang L (2019) A novel ensemble support vector machine model for land cover classification. International Journal of Distributed Sensor Networks 15(4):1550147719842732

    Article  Google Scholar 

  15. Liu Y, Zhang B, Wang LM, Wang N (2013) A self-trained semisupervised svm approach to the remote sensing land cover classification. Comput Geosci 59:98–107

    Article  Google Scholar 

  16. Lofgren E, Fefferman NH, Naumov YN, Gorski J, Naumova EN (2007) Influenza seasonality: underlying causes and modeling theories. J Virol 81(11):5429–5436

    Article  Google Scholar 

  17. Lowen AC, Mubareka S, Steel J, Palese P (2007) Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog 3(10):1470–1476

    Article  Google Scholar 

  18. Menzel A, Jakobi G, Ahas R, Scheifinger H, Estrella N (2003) Variations of the climatological growing season (1951–2000) in Germany compared with other countries. Int J Climatol 23(7):793–812

    Article  Google Scholar 

  19. Moura FE (2010) Influenza in the tropics. Curr Opin Infect Dis 23(5):415–420

    Article  Google Scholar 

  20. Moura FE, Perdigão AC, Siqueira MM (2009) Seasonality of influenza in the tropics: a distinct pattern in northeastern brazil. The American Journal of Tropical Medicine and Hygiene 81(1):180–183

    Article  Google Scholar 

  21. Qi L, Gao Y, Yang J, Ding XB, Xiong Y, Su K, Liu T, Li Q, Tang WG, Liu QY (2020) The burden of influenza and pneumonia mortality attributable to absolute humidity among elderly people in chongqing, china, 2012–2018. Science of The Total Environment p 136682

  22. Saha S, Chadha M, Al Mamun A, Rahman M, Sturm-Ramirez K, Chittaganpitch M, Pattamadilok S, Olsen SJ, Sampurno OD, Setiawaty V et al (2014) Influenza seasonality and vaccination timing in tropical and subtropical areas of southern and south-eastern asia. Bull World Health Organ 92:318–330

    Article  Google Scholar 

  23. Salah B, Xuan AD, Fouilladieu J, Lockhart A, Regnard J (1988) Nasal mucociliary transport in healthy subjects is slower when breathing dry air. Eur Respir J 1(9):852–855

    Article  Google Scholar 

  24. Salomon A, Berry I, Tuite AR, Drews S, Hatchette T, Jamieson F, Johnson C, Kwong J, Lina B, Lojo J et al (2020) Influenza increases invasive meningococcal disease risk in temperate countries. Clin Microbiol Infect 26(9):1257.e1–1257.e7

  25. Sauer T, Yorke JA, Casdagli M (1991) Embedology. J Stat Phys 65(3-4):579–616

    Article  MathSciNet  Google Scholar 

  26. Shaman J, Goldstein E, Lipsitch M (2011) Absolute humidity and pandemic versus epidemic influenza. Am J Epidemiol 173(2):127–135

    Article  Google Scholar 

  27. Shaman J, Kohn M (2009) Absolute humidity modulates influenza survival, transmission, and seasonality. America Proc Natl Acad Sci 106(9):3243–3248

    Article  Google Scholar 

  28. Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M (2010) Absolute humidity and the seasonal onset of influenza in the continental united states. PLos Biol 8(2):e1000316

    Article  Google Scholar 

  29. Stagge JH, Kohn I, Tallaksen LM, Stahl K (2014) Modeling drought impact occurrence based on climatological drought indices for four European countries. In: EGU General assembly conference abstracts, EGU general assembly conference abstracts, vol 16, p 15425

  30. Tamerius J, Nelson MI, Zhou SZ, Viboud C, Miller MA, Alonso WJ (2011) Global influenza seasonality: reconciling patterns across temperate and tropical regions. Environ Health Perspect 119 (4):439—-445

    Article  Google Scholar 

  31. Tamerius JD, Shaman JL, Alonso WJ, Bloom-Feshbach K, Uejio CK, Comrie A, Viboud C (2013) Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoS Pathog 9(3):1–12

    Article  Google Scholar 

  32. Viboud C, Boelle PY, Pakdaman K, Carrat F, Valleron AJ, Flahault A (2004) Influenza epidemics in the united states, france, and australia, 1972-1997 (1). Emerg Infect Dis 10(1):32– 40

    Article  Google Scholar 

  33. Wood SN (2006) Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics 62(4):1025–1036

    Article  MathSciNet  Google Scholar 

  34. Xie X, Li Y, Chwang A, Ho P, Seto W (2007) How far droplets can move in indoor environments–revisiting the wells evaporation–falling curve. Indoor air 17(3):211–225

    Article  Google Scholar 

  35. Ye H, Sugihara G (2016) Information leverage in interconnected ecosystems: Overcoming the curse of dimensionality. Science 353(6302):922–925

    Article  Google Scholar 

  36. Zou H, Huang B, Lu X, Jiang H, Xie L (2016) A robust indoor positioning system based on the procrustes analysis and weighted extreme learning machine. IEEE Trans Wirel Commun 15 (2):1252–1266. https://doi.org/10.1109/TWC.2015.2487963

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 71901147, 41801392, 41901329, 41971354, and 41971341), the Research Program of Shenzhen S&T Innovation Committee (Project Nos. JCYJ20210324093600002 and JCYJ20210324093012033), the National Social Science Foundation of China (grant no. 20BTJ062), The Foundation of Jilin Provincial Science & Technology Department (grant no. 20180101332JC), the Science Technology Research Foundation of Jilin Province Education Department under Grant (No. JJKH20210135KJ), the Research Program of Shenzhen S and T Innovation Committee, China (No. JCYJ20180305125131482), the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, MNR, China (Nos. KF-2019-04-010, KF-2019-04-014, KF-2018-03-066 and KF-2019-04-034), the Natural Science Foundation of Guangdong Province, China (Nos. 2019A1515010748 and 2019A1515011872), the Foundation of High-level University Phase II, China (No. 000002110335), and the Foundation of Shenzhen University for New Researchers, China (No. 2019056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyang Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Tang, S., Huang, Q. et al. The Effects of Climatological Factors on Global Influenza Across Temperate and Tropical Regions. Mobile Netw Appl 28, 439–451 (2023). https://doi.org/10.1007/s11036-022-01955-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-022-01955-1

Keywords