Skip to main content
Log in

Human Identification Using Compressed ECG Signals

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

As a result of the increased demand for improved life styles and the increment of senior citizens over the age of 65, new home care services are demanded. Simultaneously, the medical sector is increasingly becoming the new target of cybercriminals due the potential value of users’ medical information. The use of biometrics seems an effective tool as a deterrent for many of such attacks. In this paper, we propose the use of electrocardiograms (ECGs) for the identification of individuals. For instance, for a telecare service, a user could be authenticated using the information extracted from her ECG signal. The majority of ECG-based biometrics systems extract information (fiducial features) from the characteristics points of an ECG wave. In this article, we propose the use of non-fiducial features via the Hadamard Transform (HT). We show how the use of highly compressed signals (only 24 coefficients of HT) is enough to unequivocally identify individuals with a high performance (classification accuracy of 0.97 and with identification system errors in the order of 10−2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agrafioti, F., and Hatzinakos, D.: ECG based recognition using second order statistics. In: 6th Annual Conference on Communication Networks and Services Research (CNSR), pp. 82–87 (2008)

  2. Cempirek, M., and Stastny, J., The optimization of the EEG-based biometric classification. Applied Electronics, 25–28, 2007.

  3. Identity Theft Resource Center. Data breach report. Technical report (December 2014)

  4. Chan, A. D. C., Hamdy, M. M., Badre, A., Badee, V., Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. Instrum. Meas. 57(2):248–253, Feb 2008.

    Article  Google Scholar 

  5. Luz, E. J. da S., Menotti, D., Robson Schwartz, W., Evaluating the use of {ECG} signal in low frequencies as a biometry. Expert Systems with Applications 41(5):2309–2315, 2014.

    Article  Google Scholar 

  6. Frank, M., Biedert, R., Ma, E., Martinovic, I., Touchalytics, D. Song., On the applicability of touchscreen input as a behavioral biometric for continuous authentication. IEEE Transactions on Information Forensics and Security 8(1):136–148, 2013.

    Article  Google Scholar 

  7. Gahi, Y., Lamrani, M., Zoglat, A., Guennoun, M., Kapralos, B., El-Khatib, K.: Biometric identification system based on electrocardiogram data. In: Int. Conference on new technologies, mobility and security (NTMS), pp. 1–5 (2008)

  8. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. Ch., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., Stanley, H. E., PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220, June 13. doi:10.1161/01.CIR.101.23.e215.. Circulation Electronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215PMID:1085218.

  9. Inthavisas, K., and Lopresti, D., Secure speech biometric templates for user authentication. IET Biometrics 1(1):46–54, 2012.

    Article  Google Scholar 

  10. Israel, S. A., Irvine, J. M., Cheng, A., Wiederhold, M. D., Wiederhold, B. K., Ecg to identify individuals. Pattern Recogn. 38(1):133–142, 2005.

    Article  Google Scholar 

  11. Jain, A. K., Ross, A., Pankanti, S., Biometrics: a tool for information security. IEEE Transactions on Information Forensics and Security 1(2):125–143, 2006.

    Article  Google Scholar 

  12. Khalifa, W., Salem, A., Roushdy, M.: A survey of eeg based user authentication schemes. In: 8th International Conference on Informatics and Systems, pp. 55–60 (May 2012)

  13. Kiranyaz, S., Ince, T., Pulkkinen, J., Gabbouj, M., Personalized long-term ecg classification: A systematic approach. Expert Systems with Applications 38(4):3220–3226, 2011.

    Article  Google Scholar 

  14. Kumari, P., and Vaish, A., Brainwave based user identification system: A pilot study in robotics environment. Robot. Auton. Syst. 65(0):15–23, 2015.

    Article  Google Scholar 

  15. Mehrotra, H., Rattani, A., Gupta, P.: Fusion of iris and fingerprint biometric for recognition. In: Proceedings of the International Conference on Signal and Image Processing, pp. 1–6 (2006)

  16. Miller, B., Vital signs of identity [biometrics]. IEEE Spectrum 31(2):22–30, Feb 1994.

    Article  Google Scholar 

  17. Nait-Ali, A.: Beyond classical biometrics: When using hidden biometrics to identify individuals, pp. 241–246 (2011)

  18. Odinaka, I., Po-Hsiang, L., Kaplan, A.D., O’Sullivan, J. A., Sirevaag, E. J., recognition, J. W. Rohrbaugh. Ecg biometric, A comparative analysis. IEEE Transactions on Information Forensics and Security 7(6): 1812–1824, Dec 2012.

    Article  Google Scholar 

  19. Pal, S., and Mitra, M., Increasing the accuracy of {ECG} based biometric analysis by data modelling. Measurement 45(7):1927–1932, 2012.

    Article  Google Scholar 

  20. Palaniappan, R., Multiple mental thought parametric classification: A new approach for individual identification. Journal of Information and Communication Engineering 2(4), 2006.

  21. Rasmussen, K. B., Roeschlin, M., Martinovic, I., Tsudik, G.: Authentication using pulse-response biometrics. In The Network and Distributed System Security Symposium (NDSS) (2014)

  22. Riera, A., Dunne, S., Cester, I., Ruffini, G.: STARFAST: a wireless wearable eeg/ecg biometric system based on the ENOBIO sensor. International Workshop on Wearable Micro and Nanosystems for Personalised Health (2008)

  23. Saechia, S., Koseeyaporn, J., Wardkein, P., Human identification system based ECG signal. In IEEE TENCON,1–4, 2005.

  24. Schneier, B.: Changing passwords. https://www.schneier.com/blog/archives/2010/11/changing_passwo.html(November 2010)

  25. Shin, L., How biometrics could improve health security. Fortune, 2015.

  26. Silva, H., Gamboa, H., Fred, A., One lead ecg based personal identification with feature subspace ensembles, pp. 770–783. Springer: Berlin Heidelberg, 2007.

    Google Scholar 

  27. Sim, H. M., Asmuni, H., Hassan, R., biometrics, R. M. Othman. Multimodal, Weighted score level fusion based on non-ideal iris and face images. Expert Systems with Applications 41(11):5390–5404, 2014.

    Article  Google Scholar 

  28. Singh, Y. N., Singh, S. K., Ray, A. K.: Bioelectrical signals as emerging biometrics Issues and challenges. In: ISRN Signal Processing, Vol. 2012, pp. 1–13 (2012)

  29. Sun, S.: Multitask learning for eeg-based biometrics. In: 19th International Conference on Pattern Recognition (ICPR), pp. 1–4 (2008)

  30. Suresh, M., Krishnamohan, P. G., Holi, M.S., GMM modeling of person information from EMG signals. IEEE Recent Advances in Intelligent Computational Systems (RAICS),712–717 , 2011.

  31. Tantawi, M. M., Revett, K., Tolba, M. F., Salem, A.: On the use of the electrocardiogram for biometrie authentication. In: 8th International Conference on Informatics and Systems, pp. 48–54 (May 2012)

  32. Tarricone, R., and Tsouros, A. D: Home Care in Europe: The Solid Facts. WHO Regional Office Europe (2008)

  33. Tresadern, P., Cootes, T. F., Poh, N., Matejka, P., Hadid, A., Levy, C., McCool, C., Marcel, S., Mobile biometrics: Combined face and voice verification for a mobile platform. IEEE Pervasive Computing 12(1): 79–87, 2013.

    Article  Google Scholar 

  34. Wang, Y., Agrafioti, F., Hatzinakos, D., Plataniotis, K. N., Analysis of human electrocardiogram for biometric recognition. EURASIP Journal on Advances in Signal Processing, 2008, January 2008.

  35. Yang, J., Shi, Y., Yang, J., Personal identification based on finger-vein features. Comput. Hum. Behav. 27 (5):1565–1570, 2011.

Download references

Acknowledgements

This work was supported by the MINECO grant TIN2013-46469-R (SPINY: Security and Privacy in the Internet of You) and the CAM grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks).

Conflict of interests

The author declares that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Peris-Lopez.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camara, C., Peris-Lopez, P. & Tapiador, J.E. Human Identification Using Compressed ECG Signals. J Med Syst 39, 148 (2015). https://doi.org/10.1007/s10916-015-0323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0323-2

Keywords