Abstract
A linearized Crank–Nicolson Galerkin finite element method with bilinear element for nonlinear Schrödinger equation is studied. By splitting the error into two parts which are called the temporal error and the spatial error, the unconditional superconvergence result is deduced. On one hand, the regularity for a time-discrete system is presented based on the proof of the temporal error. On the other hand, the classical Ritz projection is applied to get the spatial error with order \(O(h^2)\) in \(L^2\)-norm, which plays an important role in getting rid of the restriction of \(\tau \). Then the superclose estimates of order \(O(h^2+\tau ^2)\) in \(H^1\)-norm is arrived at based on the relationship between the Ritz projection and the interpolated operator. At the same time, global superconvergence property is arrived at by the interpolated postprocessing technique. At last, three numerical examples are provided to confirm the theoretical analysis. Here, h is the subdivision parameter and \(\tau \) is the time step.










Similar content being viewed by others
References
Akrivis, G.D.: Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13(1), 115–124 (1993)
Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36(6), 1779–1807 (1999)
Shi, D.Y., Liao, X., Wang, L.L.: Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation. Appl. Math. Comput. 289, 298–310 (2016)
Shi, D.Y., Wang, P.L., Zhao, Y.M.: Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Appl. Math. Lett. 38, 129–134 (2014)
Dehghan, M., Mirzaei, D.: Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method. Int. J. Numer. Methods Eng. 76, 501–520 (2008)
Wu, L.: Two-grid mixed finite-element methods for nonlinear Schrödinger equations. Numer. Methods Part. Diff. Equ. 28(1), 63–73 (2012)
Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–77 (2005)
Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp. 67(222), 479–499 (1998)
Chang, Q.S., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148(2), 397–415 (1999)
Dehghan, M., Taleei, A.: A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients. Comput. Phys. Comm. 181, 43–51 (2010)
Bao, W.Z., Cai, Y.Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50, 492–521 (2012)
Zhang, L.M., Chang, Q.S.: A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 220(1–2), 240–256 (2008)
Lai, X., Yuan, Y.: Galerkin alternating-direction method for a kind of three-dimensional nonlinear hyperbolic problems. Comput. Math. Appl. 57(3), 384–403 (2009)
Chen, Y., Huang, Y.: The full-discrete mixed finite element methods for nonlinear hyperbolic equations. Commun. Nonlinear Sci. Numer. Simul. 3(3), 152–155 (1998)
Rachford Jr., H.H.: Two-level discrete-time Galerkin approximations for second order nonlinear parabolic partial differential equations. SIAM J. Numer. Anal. 10(6), 1010–1026 (1973)
Luskin, M.: A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 16(2), 284–299 (1979)
Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics. Springer, Sweden (2000)
Shi, D.Y., Wang, J.J., Yan, F.N.: Superconvergence analysis for nonlinear parabolic equation with \(EQ^{rot}_1\) nonconforming finite element. Comput. Appl. Math. (2016). doi:10.1007/s40314-016-0344-6
Shi, D.Y., Tang, Q.L., Gong, W.: A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term. Math. Comput. Simulat. 114, 25–36 (2015)
Gu, H.M.: Characteristic finite element methods for nonlinear Sobolev equations. Appl. Math. Comput. 102(1), 51–62 (1999)
Liu, B.Y.: The analysis of a finite element method with streamline diffusion for the compressible Navier–Stokes equations. SIAM J. Numer. Anal. 38(1), 1–16 (2000)
He, Y.N., Sun, W.W.: Stabilized finite element method based on the Crank–Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations. Math. Comput. 76(257), 115–136 (2006)
Wang, J.L.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60(2), 390–407 (2014)
Wang, J.L., Si, Z.Y., Sun, W.W.: A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media. SIAM J. Numer. Anal. 52(6), 3000–3020 (2013)
Li, B.Y., Sun, W.W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51(4), 1959–1977 (2013)
Gao, H.D.: Optimal error analysis of Galerkin FEMs for nonlinear Joule Heating equations. J. Sci. Comput. 58(3), 627–647 (2014)
Li, B.Y., Gao, H.D., Sun, W.W.: Unconditionally optimal error estiamtes of a Crank–Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52(2), 933–954 (2014)
Gao, H.D.: Unconditional optimal error estiamtes of BDF-Galerkin FEMs for nonlinear thermistor equations. J. Sci. Comput. 66(2), 504–527 (2016)
Si, Z.Y., Wang, J.L., Sun, W.W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations. Numer. Math. 134(1), 139–161 (2016)
Shi, D.Y., Wang, J.J., Yan, F.N.: Unconditional Superconvergence analysis for nonlinear parabolic equation with \(EQ^{rot}_1\) nonconforming finite element. J. Sci. Comput. (2016). doi:10.1007/s10915-016-0243-4
Shi, D.Y., Yan, F.N., Wang, J.J.: Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation. Appl. Math. Comput. 274(1), 182–194 (2016)
Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers equation. J. Sci. Comput. 53, 102–128 (2012)
Cheng, K., Wang, C.: Long time stability of high order multiStep numerical schemes for two-dimensional incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 54(5), 3123–3144 (2016)
Shi, D.Y., Wang, F.L., Fan, M.Z., Zhao, Y.M.: A new approach of the lowest order anisotropic mixed finite element high accuracy analysis for nonlinear Sine–Gordon equaitons. Math. Numer. Sin. 37(2), 148–161 (2015)
Wang, H.: Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations. Appl. Math. Comput. 170(1), 17–35 (2005)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 11271340).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shi, D., Wang, J. Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation. J Sci Comput 72, 1093–1118 (2017). https://doi.org/10.1007/s10915-017-0390-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0390-2
Keywords
- Unconditional superconvergence results
- NLSE
- Linearized C–N Galerkin FEM
- Temporal and spatial errors
- Ritz projection and interpolated operators