Abstract
An intelligent control strategy is proposed to eliminate the actuator saturation problem that exists in the trajectory tracking process of unmanned underwater vehicles (UUV). The control strategy consists of two parts: for the kinematic modeling part, a fuzzy logic-refined backstepping control is developed to achieve control velocities within acceptable ranges and errors of small fluctuations; on the basis of the velocities deducted by the improved kinematic control, the sliding mode control (SMC) is introduced in the dynamic modeling to obtain corresponding torques and forces that should be applied to the vehicle body. With the control velocities computed by the kinematic model and applied forces derived by the dynamic model, the robustness and accuracy of the UUV trajectory without actuator saturation can be achieved.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gafurov, S., Klochkov, E.: Autonomous unmanned underwater vehicles development tendencies. Procedia Eng. 106, 141–148 (2015)
Li, D., Wang, P., Du, L.: Path planning technologies for autonomous underwater vehicles-a review. IEEE Access 7, 9745–9768 (2019)
Sun, P., Boukerche, A.: Modeling and analysis of coverage degree and target detection for autonomous underwater vehicle-based system. IEEE Trans. Veh. Technol. 67(10), 9959–9971 (2018)
Bacha, S., Saadi, R., Ayad, M., Aboubou, A., Bahri, M.: A review on vehicle modeling and control technics used for autonomous vehicle path following. In: International conference on green energy conversion systems (GECS), Hammamet, Tunisia (2017)
Liu, X., Zhang, M., Rogers, E.: Trajectory tracking control for autonomous underwater vehicles based on fuzzy re-planning of a local desired trajectory. IEEE Trans. Veh. Technol. 68(12), 11,657–11,667 (2019)
Wang, X., Yao, X., Zhang, L.: Path planning under constraints and path following control of autonomous underwater vehicle with dynamical uncertainties and wave disturbances. J. Intell. Robot. Syst. 99(3-4), 891–908 (2020)
Wan, L., Sun, N., Liao, Y.L.: Backstepping control method for the trajectory tracking for the underactuated autonomous underwater vehicle. Adv. Mat. Res. 798, 484–488 (2013). Qingdao,China
Karkoub, M., Wu, H.-M., Hwang, C.-L.: Nonlinear trajectory-tracking control of an autonomous underwater vehicle. Ocean Eng. 145, 188–198 (2017)
Yang, S., Meng, M.-H.: Real-time collision-free motion planning of a mobile robot using a neural dynamics-based approach. IEEE Trans. Neural Netw. 14(6), 1541–1552 (2003)
Sun, B., Zhang, W., Song, A., Zhu, X., Zhu, D.: Trajectory tracking and obstacle avoidance control of unmanned underwater vehicles based on Mpc. In: International conference on underwater system technology: theory and applications (USYS), Wuhan, China (2018)
Hernandez-Sanchez, A., Chairez, I., Poznyak, A., Andrianova, O.: Dynamic motion backstepping control of underwater autonomous vehicle based on averaged sub-gradient integral sliding mode method. J. Intell. Robot. Syst. Theory Appl. vol. 103(3 (2021)
Zhu, D., Sun, B.: The bio-inspired model based hybrid sliding-mode tracking control for unmanned underwater vehicles. Eng. Appl. Artif. Intell. 26(10), 2260–2269 (2013)
Dong, L., Yan, J., Yuan, X., He, H., Sun, C.: Functional nonlinear model predictive control based on adaptive dynamic programming. IEEE Trans. Cybern. 49(12), 4206–4218 (2019)
Luan, Z., Zhang, J., Zhao, W., Wang, C.: Trajectory tracking control of autonomous vehicle with random network delay. IEEE Trans. Veh. Technol. 69(8), 8140–8150 (2020)
Gutierrez, B., Kwak, S.-S.: Modular multilevel converters (mmcs) controlled by model predictive control with reduced calculation burden. IEEE Trans. Power Electron. 33(11), 9176–9187 (2018)
da Costa Sousa, J., Kaymak, U.: Model predictive control using fuzzy decision functions. IEEE Trans. Syst. Man Cybern. B Cybern. 31(1), 54–65 (2001)
Na, J., Huang, Y., Wu, X., Su, S.-F., Li, G.: Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay. IEEE Trans. Cybern. 50(6), 2639–2650 (2020)
Wang, F., Chen, B., Sun, Y., Gao, Y., Lin, C.: Finite-time fuzzy control of stochastic nonlinear systems. IEEE Trans. Cybern. 50(6), 2617–2626 (2020)
Lee, C.: Fuzzy logic in control systems: fuzzy logic controller. i. IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990)
——: Fuzzy logic in control systems: fuzzy logic controller. ii. IEEE Trans. Syst. Man Cybern. 20 (2), 419–435 (1990)
Han, H., Wei, Y., Guan, L., Ye, X., Wang, A.: Trajectory tracking control of underwater vehicle-manipulator systems using uncertainty and disturbance estimator. In: Oceans MTS/IEEE Charleston, Charleston, SC USA (2018)
Lun, G., Liu, Y., Yi, P., Qu, Y.: Design of dynamic control on underwater vehicle, Appl. Mech. Mater. 138-139, 333–338 (2012)
Mohamed, S., Osman, A., Attia, S., Maged, S.: Dynamic model and control of an autonomous underwater vehicle. In: International conference on innovative trends in communication and computer engineering (ITCE), Aswan, Egypt, pp. 182–190 (2020)
Yang, S., Meng, M.: Neural network approaches to dynamic collision-free trajectory generation. IEEE Trans. Syst. Man Cybern. B Cybern. 31(3), 302–318 (2001)
Balcazar, R., De Jesus Rubio, J., Orozco, E., Andres cordova, D., Ochoa, G., Garcia, E., Pacheco, J., Gutierrez, G., Mujica-vargas, D., Aguilar-ibanez, C.: The regulation of an electric oven and an inverted pendulum. Symmetry 14(4), 759–782 (2022)
Rubio, J.D.J., Orozco, E., Cordova, D.A., Islas, M.A., Pacheco, J., Gutierrez, G.J., Zacarias, A., Soriano, L.A., Meda-Campana, J.A., Mujica-Vargas, D.: Modified linear technique for the controllability and observability of robotic arms. IEEE Access 10, 3366–3377 (2022)
Aguilar-Ibanez, C., Moreno-Valenzuela, J., Garcia-Alarcon, O., Martinez-Lopez, M., Acosta, J., Suarez-Castanon, M.: Pi-type controllers and - modulation for saturated dc-dc buck power converters. IEEE Access 9, 20,346–20,357 (2021)
Soriano, L.A., Rubio, J.D.J., Orozco, E., Cordova, D.A., Ochoa, G., Balcazar, R., Cruz, D.R., Meda-campana, J.A., zacarias, A., Gutierrez, G.J.: Optimization of sliding mode control to save energy in a scara robot. Mathematics, (24) (2021)
Soriano, L., Zamora, E., Vazquez-Nicolas, J., Hernandez, G., Barraza Madrigal, J., Balderas, D.: Pd control compensation based on a cascade neural network applied to a robot manipulator. Front. Neurorobot. 14, 577,749–577,757 (2020)
Silva-Ortigoza, R., Hernandez-Marquez, E., Roldan-Caballero, A., Tavera-Mosqueda, S., Marciano-Melchor, M., Garcia-Sanchez, J., Hernandez-Guzman, V., Silva-Ortigoza, G.: Sensorless tracking control for a full-bridge buck inverter-dc motor system: passivity and flatness-based design. IEEE Access 9, 132,191–132,204 (2021)
Li, T., Zhao, R., Chen, C.P., Fang, L., Liu, C.: Finite-time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Trans. Cybern. 48(11), 3243–3253 (2018)
Qin, J., Zhang, G., Zheng, W.X., Kang, Y.: Adaptive sliding mode consensus tracking for second-order nonlinear multiagent systems with actuator faults. IEEE Trans. Cybern. 49(5), 1605–1615 (2019)
Zaihidee, F., Mekhilef, S., Mubin, M.: Robust speed control of pmsm using sliding mode control (smc)-a review. Energies 12(9), 1669–1696 (2019)
Dhanasekar, R., Ganesh Kumar, S., Rivera, M.: Sliding mode control of electric drives/review. In: International conference on automatica (ICA-ACCA), Curico, Chile (2016)
Liu, H., Zhang, T.: Fuzzy sliding mode control of robotic manipulators with kinematic and dynamic uncertainties. J Dyn. Syst-t. ASME, vol. 134(6) (2012)
Rahmani, M., Rahman, M.H.: New hybrid control of autonomous underwater vehicles. Int. J. Control 94(11), 3038–3045 (2021)
Zhang, C., Wang, C., Wei, Y., Wang, J.: Neural network adaptive position tracking control of underactuated autonomous surface vehicle. J. Mech. Sci. Technol. 34(2), 855–865 (2020)
Wang, N., Karimi, H.: Successive waypoints tracking of an underactuated surface vehicle. IEEE Trans. Ind. Inform. 16(2), 898–908 (2020)
Wang, N., Pan, X.: Path following of autonomous underactuated ships: a translation-rotation cascade control approach. IEEE/ASME Trans. Mechatron. 24(6), 2583–2593 (2019)
Hayashibe, M., Shimoda, S.: Synergetic learning control paradigm for redundant robot to enhance error-energy index. IEEE Trans. Con., Dev. Sys. 10(3), 573–584 (2018)
Yongming, L., Shaocheng, T., Tieshan, L.: Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans. Cybern. 45(10), 2299–308 (2015)
——: Hybrid fuzzy adaptive output feedback control design for uncertain mimo nonlinear systems with time-varying delays and input saturation. IEEE Trans. Fuzzy Syst. 24(4), 841–53 (2016)
Wang, H., Liu, P.X., Niu, B.: Robust fuzzy adaptive tracking control for nonaffine stochastic nonlinear switching systems. IEEE Trans. Cybern. 48(8), 2462–2471 (2018)
Anderson, R.P., Bakolas, E., Milutinovi, D., Tsiotras, P.: Optimal feedback guidance of a small aerial vehicle in a stochastic wind. J. Guid. Control Dynamics 36(4), 975–985 (2013)
Anderson, R.P., Milutinovi, D.: On the construction of minimum-time tours for a dubins vehicle in the presence of uncertainties. J. Dynamic Syst. Meas. Control Trans. ASME 137(3), 031,001–031,008 (2015)
Omerdic, E., Roberts, G.: Thruster fault diagnosis and accommodation for open-frame underwater vehicles. Control Eng. Pract. 12(12), 1575–1598 (2004)
Vervoort, J.: Modeling and Control of an Unmanned Underwater Vehicle. M.S. Thesis, Dept. Mech. Eng., Univ. of Canterbury, Christchurch, New Zealand (2009)
Zand, J.: Enhanced Navigation and Tether Management of Inspection Class Remotely Operated Vehicles Master’s Thesis. University of British Columbia, Canada (2005)
Shen, C., Shi, Y., Buckham, B.: Trajectory tracking control of an autonomous underwater vehicle using lyapunov-based model predictive control. IEEE Trans. Ind. Electron. 65(7), 5796–5805 (2018)
Shtessel, Y., Foreman, D., Tournes, C.: Stability margins in traditional and second order sliding mode control. In: IEEE conference on decision and control, Orlando, FL, United states, Orlando, FL, United states, pp. 4604–4609 (2011)
Soylu, S., Buckham, B.J., Podhorodeski, R.P.: A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation. Ocean Eng. 35(16), 1647–1659 (2008)
Mpanza, L., Pedro, J.: Nature-inspired optimization algorithms for sliding mode control parameters tuning for autonomous quadrotor. In: 2019 IEEE Conference on Control Technology and Applications (CCTA), Hong Kong, China, pp. 1087–1092 (2019)
Acknowledgements
This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhu, D., Yang, S.X. & Biglarbegian, M. A Fuzzy Logic-based Cascade Control without Actuator Saturation for the Unmanned Underwater Vehicle Trajectory Tracking. J Intell Robot Syst 106, 39 (2022). https://doi.org/10.1007/s10846-022-01742-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10846-022-01742-w