Abstract
Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.







Similar content being viewed by others
References
Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications: reflections on the field. Adv Drug Deliv Rev 57:2106–2129. doi:10.1016/j.addr.2005.09.018
Astruc D, Boisselier E (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110:1857–1959
Dong S, Zheng B, Wang F, Huang F (2014) Supramolecular polymers constructed from macrocycle-based host–guest molecular recognition motifs. Acc Chem Res 47:1982–1994. doi:10.1021/ar5000456
Kalomiraki M, Thermos K, Chaniotakis NA (2016) Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomed 11:1–12. doi:10.2147/IJN.S93069
Ghosh S, Chakraborty P, Chakrabarti A et al (2016) Biological activity of dendrimer-methylglyoxal complexes for improved therapeutic efficacy against malignant cells. RSC Adv 6:6631–6642. doi:10.1039/C5RA23477H
Tanis I, Karatasos K (2009) Association of a weakly acidic anti-inflammatory drug (ibuprofen) with a poly(amidoamine) dendrimer as studied by molecular dynamics simulations. J Phys Chem B 113:10984–10993. doi:10.1021/jp9039176
Al-Jamal KT, Al-Jamal WT, Wang JTW et al (2013) Cationic poly-l-Lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano 7:1905–1917. doi:10.1021/nn305860k
Hsu H-J, Bugno J, Lee S, Hong S (2017) Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wiley Interdiscip Rev 9:e1409. doi:10.1002/wnan.1409
Luong D, Kesharwani P, Deshmukh R et al (2016) PEGylated PAMAM dendrimers: enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater 43:14–29. doi:10.1016/j.actbio.2016.07.015
Nguyen TTC, Nguyen CK, Nguyen TH, Tran NQ (2017) Highly lipophilic pluronics-conjugated polyamidoamine dendrimer nanocarriers as potential delivery system for hydrophobic drugs. Mater Sci Eng C 70:992–999. doi:10.1016/j.msec.2016.03.073
Brown CW, Buckhout-White S, Díaz SA et al (2017) Evaluating dye-labeled dna dendrimers for potential applications in molecular biosensing. ACS Sensors 2:401–410. doi:10.1021/acssensors.6b00778
Cai X, Zhu H, Zhang Y, Gu Z (2017) Highly efficient and safe delivery of VEGF siRNA by bioreducible fluorinated peptide dendrimers for cancer therapy. ACS Appl Mater Interfaces 9:9402–9415. doi:10.1021/acsami.6b16689
Barata TS, Teo I, Brocchini S et al (2011) Partially glycosylated dendrimers block MD-2 and prevent TLR4-MD-2-LPS complex mediated cytokine responses. PLoS Comput Biol. doi:10.1371/journal.pcbi.1002095
Öztürk K, Esendağlı G, Gürbüz MU et al (2017) Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers. Int J Pharm 517:157–167. doi:10.1016/j.ijpharm.2016.12.009
Jatczak-Pawlik I, Gorzkiewicz M, Studzian M et al (2017) Sugar-modified poly(propylene imine) dendrimers stimulate the NF-κB pathway in a myeloid cell line. Pharm Res 34:136–147. doi:10.1007/s11095-016-2049-3
Arima H, Motoyama K, Higashi T (2017) Potential therapeutic application of dendrimer/cyclodextrin conjugates with targeting ligands as advanced carriers for gene and oligonucleotide drugs. Ther Deliv 8:215–232. doi:10.4155/tde-2016-0064
Li N, Li N, Yi Q et al (2014) Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent. Biomaterials 35:9529–9545. doi:10.1016/j.biomaterials.2014.07.059
Jishkariani D, MacDermaid CM, Timsina YN et al (2017) Self-interrupted synthesis of sterically hindered aliphatic polyamide dendrimers. Proc Natl Acad Sci USA 114:E2275–E2284. doi:10.1073/pnas.1700922114
Raut S, Enciso AE, Pavan GM et al (2017) Intrinsic fluorescence of triazine dendrimers provides a new approach to study dendrimer structure and conformational dynamics. J Phys Chem C 121:6946–6954. doi:10.1021/acs.jpcc.6b11110
Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242
Zloh M, Ramaswamy C, Sakthivel T et al (2005) Investigation of the association and flexibility of cationic lipidic peptide dendrons by NMR spectroscopy. Magn Reson Chem 43:47–52. doi:10.1002/mrc.1508
Pinto LF, Riguera R, Fernandez-Megia E (2013) Stepwise filtering of the internal layers of dendrimers by transverse-relaxation-edited NMR. J Am Chem Soc 135:11513–11516. doi:10.1021/ja4059348
Pinto LF, Correa J, Martin-Pastor M et al (2013) The dynamics of dendrimers by NMR relaxation: interpretation pitfalls. J Am Chem Soc 135:1972–1977. doi:10.1021/ja311908n
Alberto R, Joao R, de los Angeles M-F et al (2017) Principal physicochemical methods used to characterize dendrimer molecule complexes used as genetic therapy agents, nanovaccines or drug carriers. Curr Pharm Des 23:1–1. doi:10.2174/1381612823666170220164535
Martinho N, Florindo H, Silva L et al (2014) Molecular modeling to study dendrimers for biomedical applications. Molecules 19:20424–20467. doi:10.3390/molecules191220424
Kim SH, Lamm MH (2012) Multiscale modeling for host-gues chemistry of dendrimers in solution. Polymers 4:463–485
Bello M, Fragoso-Vázquez J, Correa-Basurto J (2017) Theoretical studies for dendrimer-based drug delivery. Curr Pharm Des 23:1–1. doi:10.2174/1381612823666170228142429
Ahmed S, Vepuri SB, Kalhapure RS, et al (2016) Interactions of dendrimers with biological drug targets: reality or mystery: a gap in drug delivery and development research. Biomater Sci 4:1032–1050. doi:10.1039/C6BM00090H
Barata TS, Shaunak S, Teo I et al (2011) Structural studies of biologically active glycosylated polyamidoamine (PAMAM) dendrimers. J Mol Model 17:2051–2060. doi:10.1007/s00894-010-0907-1
Maingi V, Jain V, Bharatam PV, Maiti PK (2012) Dendrimer building toolkit: model building and characterization of various dendrimer architectures. J Comput Chem 33:1997–2011. doi:10.1002/jcc.23031
Quintana A, Raczka E, Piehler L et al (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19:1310–1316
Liu Y, Bryantsev VS, Diallo MS, Goddard WA (2009) PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc 131:2798–2799. doi:10.1021/ja8100227
Javor S, Reymond J-L (2009) Molecular dynamics and docking studies of single site esterase peptide dendrimers. J Org Chem 74:3665–3674. doi:10.1021/jo802743c
Razmimanesh F, Amjad-Iranagh S, Modarress H (2015) Molecular dynamics simulation study of chitosan and gemcitabine as a drug delivery system. J Mol Model 21:165. doi:10.1007/s00894-015-2705-2
Roberts BP, Krippner GY, Scanlon MJ, Chalmers DK (2009) Molecular dynamics of variegated polyamide dendrimers. Macromolecules 42:2784–2794. doi:10.1021/ma8021579
Chalmers DK, Roberts BPS, A perl molecular toolkit. http://silico.sourceforge.net
Naylor AM, Goddard WA, Kiefer GE, Tomalia DA (1989) Starburst dendrimers: 5. Molecular shape control. J Am Chem Soc 111:2339–2341
Vacas-Córdoba E, Maly M, De Mata FJ, Gómez R et al (2016) Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. Int J Nanomed 11:1281–1294
Yu C, Ma L, Li S et al (2016) HBP Builder: a tool to generate hyperbranched polymers and hyperbranched multi-arm copolymers for coarse-grained and fully atomistic molecular simulations. Sci Rep 6:1–15. doi:10.1038/srep26264
Barata TS, Brocchini S, Teo I et al (2011) From sequence to 3D structure of hyperbranched molecules: application to surface modified PAMAM dendrimers. J Mol Model 17:2741–2749. doi:10.1007/s00894-011-0966-y
Schwieters CD, Kuszewski JJ, Tjandra N, Marius Clore G (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73. doi:10.1016/S1090-7807(02)00014-9
Daylight SMARTS: A language for describing molecular patterns
Landrum G RDKit: Open-source chemoinformatics
Kleywegt G, Jones T (1997) Model-building and refinement practice. Methods Enzymol 277:208–230
ParamChem
Kleywegt G (2005) XPLO2D manual
Mishra MK, Beaty CA, Lesniak WG et al (2014) Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano 8:2134–2147
Kwok A, Eggimann GA, Reymond J-L et al (2013) Peptide dendrimer/lipid hybrid systems are efficient dna transfection generations reagents: relationships highlight the role of charge distribution across dendrimer. ACS Nano 7:4668–4682
Bowers KJ, Sacerdoti FD, Salmon JK, et al (2006) Molecular dynamics: scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the 2006 ACM/IEEE conference on supercomputing (SC’06). doi:10.1145/1188455.1188544
Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289
Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. doi:10.1002/jcc.20290
Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. doi:10.1016/0010-4655(95)00042-E
Kleywegt G, Jones T (1998) Databases in protein crystallograhy. Acta Cryst D 54:1119–1131
Acknowledgements
Nuno Martinho is thankful for the funding from FCT (Fundação para a Ciência e Tecnologia) with a doctoral fellowship (SFRH/BD/87838/2012) and iMed.ULisboa grant (UID/DTP/04138/2013). L.C. Silva acknowledges funding from Investigador FCT 2014 (IF/00437/2014), Portugal. Teresa Barata and Steve Brocchini are grateful for funding from the UK Engineering & Physical Sciences Research Council (EPSRC) for the EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies. Financial support from the consortium of industrial and governmental users for the EPSRC Centre is also acknowledged. Steve Brocchini is grateful for funding from the National Institute of Health Research (NIHR) Biomedical Research Centre at Moorfields Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, Moorfields Special Trustees, the Helen Hamlyn Trust (in memory of Paul Hamlyn), Medical Research Council, Fight for Sight and Freemasons Grand Charity. Mire Zloh acknowledges support by University of Hertfordshire.
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Martinho, N., Silva, L.C., Florindo, H.F. et al. Practical computational toolkits for dendrimers and dendrons structure design. J Comput Aided Mol Des 31, 817–827 (2017). https://doi.org/10.1007/s10822-017-0041-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-017-0041-6