Skip to main content
Log in

Practical computational toolkits for dendrimers and dendrons structure design

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications: reflections on the field. Adv Drug Deliv Rev 57:2106–2129. doi:10.1016/j.addr.2005.09.018

    Article  CAS  Google Scholar 

  2. Astruc D, Boisselier E (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110:1857–1959

    Article  CAS  Google Scholar 

  3. Dong S, Zheng B, Wang F, Huang F (2014) Supramolecular polymers constructed from macrocycle-based host–guest molecular recognition motifs. Acc Chem Res 47:1982–1994. doi:10.1021/ar5000456

    Article  CAS  Google Scholar 

  4. Kalomiraki M, Thermos K, Chaniotakis NA (2016) Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomed 11:1–12. doi:10.2147/IJN.S93069

    Article  CAS  Google Scholar 

  5. Ghosh S, Chakraborty P, Chakrabarti A et al (2016) Biological activity of dendrimer-methylglyoxal complexes for improved therapeutic efficacy against malignant cells. RSC Adv 6:6631–6642. doi:10.1039/C5RA23477H

    Article  CAS  Google Scholar 

  6. Tanis I, Karatasos K (2009) Association of a weakly acidic anti-inflammatory drug (ibuprofen) with a poly(amidoamine) dendrimer as studied by molecular dynamics simulations. J Phys Chem B 113:10984–10993. doi:10.1021/jp9039176

    Article  CAS  Google Scholar 

  7. Al-Jamal KT, Al-Jamal WT, Wang JTW et al (2013) Cationic poly-l-Lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano 7:1905–1917. doi:10.1021/nn305860k

    Article  CAS  Google Scholar 

  8. Hsu H-J, Bugno J, Lee S, Hong S (2017) Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wiley Interdiscip Rev 9:e1409. doi:10.1002/wnan.1409

    Google Scholar 

  9. Luong D, Kesharwani P, Deshmukh R et al (2016) PEGylated PAMAM dendrimers: enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater 43:14–29. doi:10.1016/j.actbio.2016.07.015

    Article  CAS  Google Scholar 

  10. Nguyen TTC, Nguyen CK, Nguyen TH, Tran NQ (2017) Highly lipophilic pluronics-conjugated polyamidoamine dendrimer nanocarriers as potential delivery system for hydrophobic drugs. Mater Sci Eng C 70:992–999. doi:10.1016/j.msec.2016.03.073

    Article  CAS  Google Scholar 

  11. Brown CW, Buckhout-White S, Díaz SA et al (2017) Evaluating dye-labeled dna dendrimers for potential applications in molecular biosensing. ACS Sensors 2:401–410. doi:10.1021/acssensors.6b00778

    Article  CAS  Google Scholar 

  12. Cai X, Zhu H, Zhang Y, Gu Z (2017) Highly efficient and safe delivery of VEGF siRNA by bioreducible fluorinated peptide dendrimers for cancer therapy. ACS Appl Mater Interfaces 9:9402–9415. doi:10.1021/acsami.6b16689

    Article  CAS  Google Scholar 

  13. Barata TS, Teo I, Brocchini S et al (2011) Partially glycosylated dendrimers block MD-2 and prevent TLR4-MD-2-LPS complex mediated cytokine responses. PLoS Comput Biol. doi:10.1371/journal.pcbi.1002095

    Google Scholar 

  14. Öztürk K, Esendağlı G, Gürbüz MU et al (2017) Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers. Int J Pharm 517:157–167. doi:10.1016/j.ijpharm.2016.12.009

    Article  Google Scholar 

  15. Jatczak-Pawlik I, Gorzkiewicz M, Studzian M et al (2017) Sugar-modified poly(propylene imine) dendrimers stimulate the NF-κB pathway in a myeloid cell line. Pharm Res 34:136–147. doi:10.1007/s11095-016-2049-3

    Article  CAS  Google Scholar 

  16. Arima H, Motoyama K, Higashi T (2017) Potential therapeutic application of dendrimer/cyclodextrin conjugates with targeting ligands as advanced carriers for gene and oligonucleotide drugs. Ther Deliv 8:215–232. doi:10.4155/tde-2016-0064

    Article  CAS  Google Scholar 

  17. Li N, Li N, Yi Q et al (2014) Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent. Biomaterials 35:9529–9545. doi:10.1016/j.biomaterials.2014.07.059

    Article  CAS  Google Scholar 

  18. Jishkariani D, MacDermaid CM, Timsina YN et al (2017) Self-interrupted synthesis of sterically hindered aliphatic polyamide dendrimers. Proc Natl Acad Sci USA 114:E2275–E2284. doi:10.1073/pnas.1700922114

    Article  CAS  Google Scholar 

  19. Raut S, Enciso AE, Pavan GM et al (2017) Intrinsic fluorescence of triazine dendrimers provides a new approach to study dendrimer structure and conformational dynamics. J Phys Chem C 121:6946–6954. doi:10.1021/acs.jpcc.6b11110

    Article  CAS  Google Scholar 

  20. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  21. Zloh M, Ramaswamy C, Sakthivel T et al (2005) Investigation of the association and flexibility of cationic lipidic peptide dendrons by NMR spectroscopy. Magn Reson Chem 43:47–52. doi:10.1002/mrc.1508

    Article  CAS  Google Scholar 

  22. Pinto LF, Riguera R, Fernandez-Megia E (2013) Stepwise filtering of the internal layers of dendrimers by transverse-relaxation-edited NMR. J Am Chem Soc 135:11513–11516. doi:10.1021/ja4059348

    Article  CAS  Google Scholar 

  23. Pinto LF, Correa J, Martin-Pastor M et al (2013) The dynamics of dendrimers by NMR relaxation: interpretation pitfalls. J Am Chem Soc 135:1972–1977. doi:10.1021/ja311908n

    Article  CAS  Google Scholar 

  24. Alberto R, Joao R, de los Angeles M-F et al (2017) Principal physicochemical methods used to characterize dendrimer molecule complexes used as genetic therapy agents, nanovaccines or drug carriers. Curr Pharm Des 23:1–1. doi:10.2174/1381612823666170220164535

    Article  Google Scholar 

  25. Martinho N, Florindo H, Silva L et al (2014) Molecular modeling to study dendrimers for biomedical applications. Molecules 19:20424–20467. doi:10.3390/molecules191220424

    Article  Google Scholar 

  26. Kim SH, Lamm MH (2012) Multiscale modeling for host-gues chemistry of dendrimers in solution. Polymers 4:463–485

    Article  Google Scholar 

  27. Bello M, Fragoso-Vázquez J, Correa-Basurto J (2017) Theoretical studies for dendrimer-based drug delivery. Curr Pharm Des 23:1–1. doi:10.2174/1381612823666170228142429

    Article  Google Scholar 

  28. Ahmed S, Vepuri SB, Kalhapure RS, et al (2016) Interactions of dendrimers with biological drug targets: reality or mystery: a gap in drug delivery and development research. Biomater Sci 4:1032–1050. doi:10.1039/C6BM00090H

    Article  CAS  Google Scholar 

  29. Barata TS, Shaunak S, Teo I et al (2011) Structural studies of biologically active glycosylated polyamidoamine (PAMAM) dendrimers. J Mol Model 17:2051–2060. doi:10.1007/s00894-010-0907-1

    Article  CAS  Google Scholar 

  30. Maingi V, Jain V, Bharatam PV, Maiti PK (2012) Dendrimer building toolkit: model building and characterization of various dendrimer architectures. J Comput Chem 33:1997–2011. doi:10.1002/jcc.23031

    Article  CAS  Google Scholar 

  31. Quintana A, Raczka E, Piehler L et al (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19:1310–1316

    Article  CAS  Google Scholar 

  32. Liu Y, Bryantsev VS, Diallo MS, Goddard WA (2009) PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc 131:2798–2799. doi:10.1021/ja8100227

    Article  CAS  Google Scholar 

  33. Javor S, Reymond J-L (2009) Molecular dynamics and docking studies of single site esterase peptide dendrimers. J Org Chem 74:3665–3674. doi:10.1021/jo802743c

    Article  CAS  Google Scholar 

  34. Razmimanesh F, Amjad-Iranagh S, Modarress H (2015) Molecular dynamics simulation study of chitosan and gemcitabine as a drug delivery system. J Mol Model 21:165. doi:10.1007/s00894-015-2705-2

    Article  Google Scholar 

  35. Roberts BP, Krippner GY, Scanlon MJ, Chalmers DK (2009) Molecular dynamics of variegated polyamide dendrimers. Macromolecules 42:2784–2794. doi:10.1021/ma8021579

    Article  CAS  Google Scholar 

  36. Chalmers DK, Roberts BPS, A perl molecular toolkit. http://silico.sourceforge.net

  37. Naylor AM, Goddard WA, Kiefer GE, Tomalia DA (1989) Starburst dendrimers: 5. Molecular shape control. J Am Chem Soc 111:2339–2341

    Article  CAS  Google Scholar 

  38. Vacas-Córdoba E, Maly M, De Mata FJ, Gómez R et al (2016) Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. Int J Nanomed 11:1281–1294

    Google Scholar 

  39. Yu C, Ma L, Li S et al (2016) HBP Builder: a tool to generate hyperbranched polymers and hyperbranched multi-arm copolymers for coarse-grained and fully atomistic molecular simulations. Sci Rep 6:1–15. doi:10.1038/srep26264

    Article  CAS  Google Scholar 

  40. Barata TS, Brocchini S, Teo I et al (2011) From sequence to 3D structure of hyperbranched molecules: application to surface modified PAMAM dendrimers. J Mol Model 17:2741–2749. doi:10.1007/s00894-011-0966-y

    Article  CAS  Google Scholar 

  41. Schwieters CD, Kuszewski JJ, Tjandra N, Marius Clore G (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73. doi:10.1016/S1090-7807(02)00014-9

    Article  CAS  Google Scholar 

  42. Daylight SMARTS: A language for describing molecular patterns

  43. Landrum G RDKit: Open-source chemoinformatics

  44. Kleywegt G, Jones T (1997) Model-building and refinement practice. Methods Enzymol 277:208–230

    Article  CAS  Google Scholar 

  45. ParamChem

  46. Kleywegt G (2005) XPLO2D manual

  47. Mishra MK, Beaty CA, Lesniak WG et al (2014) Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano 8:2134–2147

    Article  CAS  Google Scholar 

  48. Kwok A, Eggimann GA, Reymond J-L et al (2013) Peptide dendrimer/lipid hybrid systems are efficient dna transfection generations reagents: relationships highlight the role of charge distribution across dendrimer. ACS Nano 7:4668–4682

    Article  CAS  Google Scholar 

  49. Bowers KJ, Sacerdoti FD, Salmon JK, et al (2006) Molecular dynamics: scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the 2006 ACM/IEEE conference on supercomputing (SC’06). doi:10.1145/1188455.1188544

  50. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289

    Article  CAS  Google Scholar 

  51. Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. doi:10.1002/jcc.20290

    Article  CAS  Google Scholar 

  52. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. doi:10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  53. Kleywegt G, Jones T (1998) Databases in protein crystallograhy. Acta Cryst D 54:1119–1131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Nuno Martinho is thankful for the funding from FCT (Fundação para a Ciência e Tecnologia) with a doctoral fellowship (SFRH/BD/87838/2012) and iMed.ULisboa grant (UID/DTP/04138/2013). L.C. Silva acknowledges funding from Investigador FCT 2014 (IF/00437/2014), Portugal. Teresa Barata and Steve Brocchini are grateful for funding from the UK Engineering & Physical Sciences Research Council (EPSRC) for the EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies. Financial support from the consortium of industrial and governmental users for the EPSRC Centre is also acknowledged. Steve Brocchini is grateful for funding from the National Institute of Health Research (NIHR) Biomedical Research Centre at Moorfields Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, Moorfields Special Trustees, the Helen Hamlyn Trust (in memory of Paul Hamlyn), Medical Research Council, Fight for Sight and Freemasons Grand Charity. Mire Zloh acknowledges support by University of Hertfordshire.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teresa Barata or Mire Zloh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1275 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinho, N., Silva, L.C., Florindo, H.F. et al. Practical computational toolkits for dendrimers and dendrons structure design. J Comput Aided Mol Des 31, 817–827 (2017). https://doi.org/10.1007/s10822-017-0041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0041-6

Keywords