Abstract
We consider fuzzy stochastic programming problems with a crisp objective function and linear constraints whose coefficients are fuzzy random variables, in particular of type L-R. To solve this type of problems, we formulate deterministic counterparts of chance-constrained programming with fuzzy stochastic coefficients, by combining constraints on probability of satisfying constraints, as well as their possibility and necessity. We discuss the possible indices for comparing fuzzy quantities by putting together interval orders and statistical preference. We study the convexity of the set of feasible solutions under various assumptions. We also consider the case where fuzzy intervals are viewed as consonant random intervals. The particular cases of type L-R fuzzy Gaussian and discrete random variables are detailed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aiche, F. (1995). Sur l’optimisation floue stochastique, Dissertation (pp. 97–115). Algeria: University of Tizi-ouzou.
Aiche, F., & Dubois, D. (2010). An extension of stochastic dominance to fuzzy random variables. In E. Hüllermeier et al. (Eds.), International conference on information processing and management of uncertainty in knowledge-based systems (IPMU 2010), LNAI 6178 (pp. 159–168), Dortmund (Germany): Springer.
Ammar E. E. (2009) On fuzzy random multiobjective quadratic programming. European Journal of Operational Research 193: 329–341
Baas S. M., Kwakernaak H. (1977) Rating and ranking of multiple aspect alternatives using fuzzy sets. Automatica 13: 47–58
Chakraborty D., Rao K. R., Tiwari R. N. (1994) Interactive decision making in mixed (fuzzy and stochastic) environment. European Journal of Operational Research 31: 89–107
Chanas S., Delgado M., Verdegay J. L., Vila M. A. (1993) Ranking fuzzy real intervals in the setting of random sets. Information Sciences 69: 201–217
Chanas S., Nowakowski M. (1988) Single value simulation of fuzzy variable. Fuzzy Sets and Systems, 25: 43–57
Chanas S., Zielinski P. (1999) Ranking fuzzy intervals in the setting of random sets-further results. Information Sciences 117: 191–200
Charnes A., Cooper W. W. (1959) Chance-constrained programming. Management Science 6: 73–79
Couso I., Dubois D. (2009) On the variability of the concept of variance for fuzzy random variables. IEEE Transactions on Fuzzy Systems 17: 1070–1080
Couso I., Sánchez L. (2011) Upper and lower probabilities induced by a fuzzy random variable. Fuzzy Sets and Systems 165(1): 1–23
Dantzig G. B. (1955) Linear programming under under uncertainty. Management Sciences 1: 3–4
David H. (1963) The method of paired comparisons, Griffins statistical monographs & courses (Vol. 12). Charles Griffin & D. Ltd., London
de Campos L., Gonzalez Munoz A. (1989) A subjective approach for ranking fuzzy numbers. Fuzzy Sets & Systems 29: 145–153
Destercke, S., Dubois, D., & Chojnacki, E. (2008). Unifying practical uncertainty representations Part I: Generalized p-boxes. International Journal of Approximate Reasoning, 49, 649–663; Part II: Clouds. 49, 664–677.
Dubois, D. (1987). Linear programming with fuzzy data. In J. C. Bezdek (Ed.), Analysis of Fuzzy Information, volume III, Application in Engineering and Sciences (pp. 241–263). Boca Raton, FL: CRC Press.
Dubois, D., Kerre, E., Mesiar, R., & Prade, H. (2000). Fuzzy interval analysis. In: Dubois, D., & Prade, H. (Eds.), Fundamentals of fuzzy sets, The Handbooks of Fuzzy Sets Series (pp. 483–581). Boston, MA: Kluwer.
Dubois D., Prade H. (1983) Ranking fuzzy numbers in the setting of possibility theory. Information Sciences 30: 183–225
Dubois D., Prade H. (1987a) Fuzzy numbers an overview. In: Bezdek J. C. (Ed.), Analysis of fuzzy information, Vol. 2. CRC Press, Boca Raton, pp 3–39
Dubois D., Prade H. (1987b) The mean value of a fuzzy number. Fuzzy Sets & Systems 24: 279–300
Dubois D., Prade H. (1988) Possibility theory. Plenum Press, New York
Dubois D., Prade H., Sabbadin R. (2001) Decision theoretic foundations of qualitative possibility theory. European Journal of Operational Research 128: 459–478
Fortemps P., Roubens M. (1996) Ranking and defuzzification methods based on area compensation. Fuzzy Sets & Systems 82: 319–330
Fishburn P. (1987) Interval orderings. Wiley, New York
Inuiguchi, M. (2007). On possibilistic/fuzzy optimization. In Foundations of fuzzy logic and soft computing, IFSA 2007, LNCS 4529 (pp. 351–360), Cancun, Mexico: Springer.
Inuiguchi M., Ichihashi H., Kume Y. (1992) Relationships between modality constrained programming problems and various fuzzy mathematical programming problems. Fuzzy Sets and Systems 49: 243–259
Inuiguchi M., Ramik J. (2000) Possibilistic linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets & Systems 111: 3–28
Iskander M. G. (2005) A suggested approach for possibility and necessity dominance indices in stochastic fuzzy linear programming. Applied Mathematics Letters 18: 395–399
Kall D. (1978) Stochastic linear programming. Springer, Berlin, pp 79–92
Katagiri H., Sakawa M., Ishii H. (2004) Fuzzy random bottleneck spanning tree problems using possibility and necessity measures. European Journal of Operational Research 152: 88–95
Katagiri H., Sakawa M., Kato K., Nishizaki I. (2008) Interactive multiobjective fuzzy random linear programming: Maximization of possibility and probability. European Journal of Operational Research 188: 330–339
Kruse H., Meyer K. D. (1987) Statistics with vague data. D. Riedel, Dordrecht
Kwakernaak H. (1978) Fuzzy random variables I. Information Sciences 15: 1–29
Li J., Xu J., Gen M. (2006) A class of multiobjective linear programming model with fuzzy random coefficients. Mathematical and Computer Modelling 44: 1097–1113
Liou, T., & Wang, J. (1992). Ranking fuzzy numbers with integral value. Fuzzy Sets & Systems, 50, 247–255.
Luhandjula M. K. (1996) Fuzziness and randomness in an optimization framework. Fuzzy Sets & Systems 77: 291–297
Luhandjula M. K. (2004) Optimization under hybrid uncertainty. Fuzzy Sets & Systems 146: 187–203
Luhandjula, M. K. (2006). Fuzzy stochastic linear programming: Survey and future research directionsfla. European Journal of Operational Research, 174, 1353–1367.
Luhandjula, M. K., & Gupta M. M. (1996). On fuzzy stochastic optimization. Fuzzy Sets and Systems, 81, 47–55.
Luhandjula M. K., Joubert J. W. (2010) On some optimisation models in fuzzy-stochastic environment. European Journal of Operational Research 207: 1433–1441
Ogura Y., Li S. M., Ralescu D. A. (2001) Set Defuzzification and Choquet Integral. International Journal of Uncertainty, Fuzziness and Knowledge- Based Systems 9: 1–12
Puri M., Ralescu D. (1986) Fuzzy random variables. Journal of the Mathematics and Applications 1114: 409–420
Qiao Z., Wang W. (1993) On solution and distribution problem of the linear programming with fuzzy random variable coefficients. Fuzzy Sets & Systems 58: 155–170
Qiao Z., Zhang Y., Wang W. (1994) On fuzzy random linear programming. Fuzzy Sets & Systems 65: 31649
Shapiro A. F. (2009) Fuzzy random variables. Insurance: Mathematics and Economics 44: 307–314
Wang X., Kerre E. (2001) Reasonable properties for ordering of fuzzy quantities. Fuzzy Sets & Systems 118: 375–406
Wang W., Qiao Z. (1993) Linear programming with fuzzy random variable coefficients. Fuzzy Sets & Systems 57: 295–311
Yager, R. R. (1978). Ranking fuzzy subsets over the unit interval. In Proceedings of the IEEE international conference on decision and control (pp. 1435–1437).
Yager R. R. (1980) On choosing between fuzzy subsets. Kybernetes 9: 151–154
Yager R. R. (1993) Criteria for evaluating fuzzy ranking methods of the unit interval. Information Sciences 24: 139–157
Yazini A. V. (1987) Fuzzy and stochastic programming. Fuzzy Sets & Systems 22: 171–188
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Aiche, F., Abbas, M. & Dubois, D. Chance-constrained programming with fuzzy stochastic coefficients. Fuzzy Optim Decis Making 12, 125–152 (2013). https://doi.org/10.1007/s10700-012-9151-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10700-012-9151-8