Skip to main content
Log in

An alternative class of irreducible polynomials for optimal extension fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Optimal extension fields (OEF) are a class of finite fields used to achieve efficient field arithmetic, especially required by elliptic curve cryptosystems (ECC). In software environment, OEFs are preferable to other methods in performance and memory requirement. However, the irreducible binomials required by OEFs are quite rare. Sometimes irreducible trinomials are alternative choices when irreducible binomials do not exist. Unfortunately, trinomials require more operations for field multiplication and thereby affect the efficiency of OEF. To solve this problem, we propose a new type of irreducible polynomials that are more abundant and still efficient for field multiplication. The proposed polynomial takes the advantage of polynomial residue arithmetic to achieve high performance for field multiplication which costs O(m 3/2) operations in \({\mathbb{F}_p}\) . Extensive simulation results demonstrate that the proposed polynomials roughly outperform irreducible binomials by 20% in some finite fields of medium prime characteristic. So this work presents an interesting alternative for OEFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey D.V., Paar C.: Optimal extension fields for fast arithmetic in public-key algorithms. In: CRYPTO’98: Proceedings of the 18th Annual International Cryptology Conference on Advances in Cryptology, Lecture Notes In Computer Science, vol. 1462, pp. 472–485. Springer-Verlag, London (1998).

  2. Bailey D.V., Paar C.: Efficient arithmetic in finite field extensions with application in elliptic curve cryptography. J. Cryptol. 14, 153–176 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Bajard J.C., Imbert L., Négre C.: Modular multiplication in GF(p k) using Lagrange representation. In: Proceedings of the Third International Conference on Cryptology: Progress in Cryptology, Lecture Notes in Computer Science, vol. 2551, pp. 275–284. Springer-Verlag, London (2002).

  4. Bajard J.C., Imbert L., Jullien G.A., Williams H.C.: A CRT-based Montgomery multiplication for finite fields of small characteristic. In: IMACS’05: World Congress: Scientific Computation, Applied Mathematics and Simulation, Paris (France), 11–15 July 2005.

  5. Bajard J.C., Imbert L., Négre C.: Arithmetic operations in finite fields of medium prime characteristic using the lagrange representation. IEEE Trans. Comput. 55, 1167–1177 (2006)

    Article  Google Scholar 

  6. Halbutoǧullari A., Koç Ç.K.: Parallel multiplication in GF(2k) using polynomial residue arithmetic. Des. Codes Cryptogr. 20, 155–173 (2000)

    Article  MathSciNet  Google Scholar 

  7. Knuth D.E.: Seminumerical algorithms. In: Art of Computer Programming, vol. 2, 3rd edn. Addison-Wesley Professional, Reading (1997).

  8. Koblitz N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li Y., Négre C.: An efficient multiplication algorithm using binomial residue representation. In: International Conference on Security and Cryptography, SECRYPT 2008, pp. 319–324 (2008).

  10. Lidl R., Niederreiter H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, New York, NY, USA (1994)

    MATH  Google Scholar 

  11. Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, New York, NY, USA (1996)

    Book  MATH  Google Scholar 

  12. Lim C.H., Hwang H.S.: Fast implementation of elliptic curve arithmetic in GF(p n). In: PKC ’00: Proceedings of the Third International Workshop on Practice and Theory in Public Key Cryptography, pp. 405–421. Springer-Verlag, London (2000).

  13. Miller V.S.: Uses of elliptic curve in cryptography. In: Advances in Cryptology, Proceedings of CRYPTO’86, pp. 417–428 (1986).

  14. Moenck R.T.: Practical fast polynomial multiplication. In: Proceedings of the Third ACM Symposium on Symbolic and Algebraic Computation, SYMSAC ’76, pp. 136–148. ACM, New York (1976).

  15. Nakajima T., Izu T., Takagi T.: Reduction optimal trinomials for efficient software implementation of the ηT pairing. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E91-A(9), 2379–2386 (2008).

  16. Nogami Y., Kato H., Nekado K., Morikawa Y.: Efficient exponentiation in extensions of finite fields without fast Frobenius mappings. ETRI J. 30, 818–825 (2008)

    Article  Google Scholar 

  17. VonZur Gathen J., Gerhard J.: Modern Computer Algebra. Cambridge University Press, New York, NY, USA (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Li.

Additional information

Communicated by S. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Chen, Gl. & Li, Jh. An alternative class of irreducible polynomials for optimal extension fields. Des. Codes Cryptogr. 60, 171–182 (2011). https://doi.org/10.1007/s10623-010-9424-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9424-6

Keywords

Mathematics Subject Classification (2000)