Abstract
With the advancement of wireless communication technology, the number of wireless network terminals has exploded, and various new business scenarios have emerged. The 6G mobile communication technology not only surpasses 5G standards in terms of transmission rate, delay, power and other performances, but also extends the communication range to multiple fields such as air, ground, ocean, etc., which greatly promotes Unmanned Aerial Vehicle (UAV) communication technology research and development. Compared to terrestrial networks, UAV communication has advantages such as high flexibility and easy deployment. However, there are still many problems and challenges in practical applications. In this paper, we will first introduce the functions and application scenarios of UAV communication, then discuss the current challenges and related technical research, and finally look forward to the future development prospects.




Similar content being viewed by others
Data availability
No datasets were generated or analysed during the current study.
References
Mozaffari, M., Saad, W., Bennis, M., Nam, Y.-H., Debbah, M.: A tutorial on UAVs for wireless networks: applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 21(3), 2334–2360 (2019)
Dai, M., Huang, N., Wu, Y., Gao, J., Su, Z.: Unmanned-aerial-vehicle-assisted wireless networks: advancements, challenges, and solutions. IEEE Internet Things J. 10(5), 4117–4147 (2023)
Wang, J., Jiang, C., Han, Z., Ren, Y., Maunder, R.G., Hanzo, L.: Taking drones to the next level: cooperative distributed unmanned-aerial-vehicular networks for small and mini drones. IEEE Veh. Technol. Mag. 12(3), 73–82 (2017)
Jiang, C., Li, Z.: Decreasing big data application latency in satellite link by caching and peer selection. IEEE Trans. Netw. Sci. Eng. 7(4), 2555–2565 (2020)
Hou, X., Wang, J., Jiang, C., Zhang, X., Ren, Y., Debbah, M.: UAV-enabled covert federated learning. IEEE Trans. Wirel. Commun. (2023). https://doi.org/10.1109/TWC.2023.3245621
Zhang, P., Wang, C., Jiang, C., Benslimane, A.: UAV-assisted multi-access edge computing: technologies and challenges. IEEE Internet Things Mag. 4(4), 12–17 (2021)
Khuwaja, A.A., Chen, Y., Zhao, N., Alouini, M.-S., Dobbins, P.: A survey of channel modeling for UAV communications. IEEE Commun. Surv. Tutor. 20(4), 2804–2821 (2018)
Hafeez, S., Khan, A.R., Al-Quraan, M.M., Mohjazi, L., Zoha, A., Imran, M.A., Sun, Y.: Blockchain-assisted UAV communication systems: a comprehensive survey. IEEE Open J. Veh. Technol. 4, 558–580 (2023)
Elnabty, I.A., Fahmy, Y., Kafafy, M.: A survey on UAV placement optimization for UAV-assisted communication in 5G and beyond networks. Phys. Commun. 51, 101564 (2022)
Sang, I.H.: Survey on UAV deployment and trajectory in wireless communication networks: applications and challenges. Wirel. Commun. Netw. Appl. 13, 389 (2022)
Sharma, A., Vanjani, P., Paliwal, N., Basnayaka, C.M.W., Jayakody, D.N.K., Hwang-Cheng, W., Muthuchidambaranathan, P.: Communication and networking technologies for UAVs: a survey. J. Netw. Comput. Appl. 168, 102739 (2020)
Wang, J., Jiang, C., Kuang, L.: High-mobility satellite-UAV communications: challenges, solutions, and future research trends. IEEE Commun. Mag. 60, 38–43 (2022)
Sharma, J., Mehra, P.S.: Secure communication in IoT-based UAV networks: a systematic survey. Internet Things 23, 100883 (2023)
Junhai, L., Zhiyan, W., Ming, X., Linyong, W., Yuxin, T., Yu, C.: Path planning for UAV communication networks: related technologies, solutions, and opportunities. ACM Comput. Surv. 55, 1–37 (2023)
Aggarwal, S., Kumar, N.: Path planning techniques for unmanned aerial vehicles: a review, solutions, and challenges. Comput. Commun. 149, 270–299 (2020)
Hell, P., Mezei, M., Varga, P.J.: Drone communications analysis. In: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 000213–000216. IEEE (2017)
Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., Bettstetter, C.: Drone networks: communications, coordination, and sensing. Ad Hoc Netw. 68, 1–15 (2018)
Hassija, V., Chamola, V., Agrawal, A., Goyal, A., Luong, N.C., Niyato, D., Yu, F.R., Guizani, M.: Fast, reliable, and secure drone communication: a comprehensive survey. IEEE Commun. Surv. Tutor. 23(4), 2802–2832 (2021)
Shan, L., Miura, R., Kagawa, T., Ono, F., Li, H.-B., Kojima, F.: Machine learning-based field data analysis and modeling for drone communications. IEEE Access 7, 79127–79135 (2019)
Pogaku, A.C., Do, D.-T., Lee, B.M., Nguyen, N.D.: UAV-assisted RIS for future wireless communications: a survey on optimization and performance analysis. IEEE Access 10, 16320–16336 (2022)
Shahzadi, R., Ali, M., Khan, H.Z., Naeem, M.: UAV assisted 5G and beyond wireless networks: a survey. J. Netw. Comput. Appl. 189, 103114 (2021)
Zhang, L., Zhao, H., Hou, S., Zhao, Z., Xu, H., Wu, X., Wu, Q., Zhang, R.: A survey on 5G millimeter wave communications for UAV-assisted wireless networks. IEEE Access 7, 117460–117504 (2019)
Jiang, X., Chen, X., Tang, J., Zhao, N., Zhang, X.Y., Niyato, D., Wong, K.-K.: Covert communication in UAV-assisted air-ground networks. IEEE Wirel. Commun. 28(4), 190–197 (2021)
Chen, X., Sheng, M., Li, B., Zhao, N.: Survey on unmanned aerial vehicle communications for 6G. J. Electron. Inf. Technol. 44(3), 781–789 (2022)
Wang, B., Sun, Y., Zhao, N., Gui, G.: Learn to coloring: fast response to perturbation in UAV-assisted disaster relief networks. IEEE Trans. Veh. Technol. 69(3), 3505–3509 (2020)
Lee, I., Babu, V., Caesar, M., Nicol, D.: Deep Reinforcement Learning for UAV-Assisted Emergency Response, pp. 327–336. Association for Computing Machinery (2021)
Haichao, W., Jiahong, Z., Mingyue, L., Aide, X.: Performance analysis of unmanned aerial vehicle joint D2D emergency communication network. Sci. Technol. Eng. 22(15), 6156–6163 (2022)
Gao, Y., Yuan, X., Yang, D., Hu, Y., Cao, Y., Anke, S.: UAV-assisted MEC system with mobile ground terminals: DRL-based joint terminal scheduling and UAV 3D trajectory design. IEEE Trans. Veh. Technol. (2024). https://doi.org/10.1109/TVT.2024.3367624
Zhu, C., Shi, Y., Zhao, H., Chen, K., Zhang, T., Chongyu, B.: A fairness-enhanced federated learning scheduling mechanism for UAV-assisted emergency communication. Sensors 24, 1599 (2024)
Jingmin, T., Bingwen, W., Jiaqi, H., Yaolian, S.: Optimization of relay trajectory and resource allocation for full duplex drones. J. Beijing Univ. Posts Telecommun. 47(1), 51 (2024)
Liu, R., Liu, A., Qu, Z., Xiong, N.N.: An UAV-enabled intelligent connected transportation system with 6G communications for internet of vehicles. IEEE Trans. Intell. Transp. Syst. 24(2), 2045–2059 (2023)
Michailidis, E.T., Miridakis, N.I., Michalas, A., Skondras, E., Vergados, D.J.: Energy optimization in dual-RIS UAV-aided MEC-enabled internet of vehicles. Sensors 21(13), 4392 (2021)
Chen, N., Zhang, P., Kumar, N., Hsu, C.-H., Abualigah, L., Zhu, H.: Spectral graph theory-based virtual network embedding for vehicular fog computing: a deep reinforcement learning architecture. Knowl. Based Syst. 257, 109931 (2022)
Xiying, F., Huang Chuanhe, Z.J., Shaojie, W.: Interference-aware node access scheme in UAV-aided VANET. J. Commun. 40(6), 90–101 (2019)
Wang, J., Xu, C., Yang, X., Zurada, J.M.: A novel pruning algorithm for smoothing feedforward neural networks based on group Lasso method. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 2012–2024 (2017)
Xie, X., Zhang, H., Wang, J., Chang, Q., Wang, J., Pal, N.R.: Learning optimized structure of neural networks by hidden node pruning with \(L\)1 regularization. IEEE Trans. Cybern. 50(3), 1333–1346 (2019)
Zhang, H., Pu, Y.-F., Xie, X., Zhang, B., Wang, J., Huang, T.: A global neural network learning machine: coupled integer and fractional calculus operator with an adaptive learning scheme. Neural Netw. 143, 386–399 (2021)
Wang, J., Chang, Q., Chang, Q., Liu, Y., Pal, N.R.: Weight noise injection-based MLPS with group lasso penalty: asymptotic convergence and application to node pruning. IEEE Trans. Cybern. 49(12), 4346–4364 (2019)
Gong, X., Rong, Z., Wang, J., Zhang, K., Yang, S.: A hybrid algorithm based on state-adaptive slime mold model and fractional-order ant system for the travelling salesman problem. Complex Intell. Syst. 9, 3951–3970 (2023)
Wang, X., Zhang, B., Wang, J., Zhang, K., Jin, Y.: A cluster-based competitive particle swarm optimizer with a sparse truncation operator for multi-objective optimization. Swarm Evol. Comput. 71, 101083 (2022)
Chen, J., Wu, Q., Xu, Y., Qi, N., Fang, T., Liu, D.: Spectrum allocation for task-driven UAV communication networks exploiting game theory. IEEE Wirel. Commun. 28(4), 174–181 (2021)
Yan, S., Peng, M., Cao, X.: A game theory approach for joint access selection and resource allocation in UAV assisted IoT communication networks. IEEE Internet Things J. 6(2), 1663–1674 (2019)
Qi, W., Song, Q., Guo, L., Jamalipour, A.: Energy-efficient resource allocation for UAV-assisted vehicular networks with spectrum sharing. IEEE Trans. Veh. Technol. 71(7), 7691–7702 (2022)
Fan, C., Li, B., Hou, J., Wu, Y., Guo, W., Zhao, C.: Robust fuzzy learning for partially overlapping channels allocation in UAV communication networks. IEEE Trans. Mob. Comput. 21(4), 1388–1401 (2022)
Dai, M., Luan, T.H., Su, Z., Zhang, N., Xu, Q., Li, R.: Joint channel allocation and data delivery for UAV-assisted cooperative transportation communications in post-disaster networks. IEEE Trans. Intell. Transp. Syst. 23(9), 16676–16689 (2022)
Ranjha, A., Javed, M.A., Srivastava, G., Asif, M.: Quasi-optimization of resource allocation and positioning for solar-powered UAVs. IEEE Trans. Netw. Sci. Eng. (2023). https://doi.org/10.1109/TNSE.2023.3282870
Wu, D., Zhang, Y., Chen, Y.: Joint optimization method of spectrum resource for UAV swarm information transmission. Electronics 11(20), 3372 (2022)
Li, K., Ni, W., Tovar, E., Jamalipour, A.: Deep Q-learning based resource management in UAV-assisted wireless powered IoT networks. In: ICC 2020—2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020)
Liu, B., Xu, H., Zhou, X.: Resource allocation in unmanned aerial vehicle (UAV)-assisted wireless-powered internet of things. Sensors 19(8), 1908 (2019)
Zhang, T., Liu, G., Zhang, H., Kang, W., Karagiannidis, G.K., Nallanathan, A.: Energy-efficient resource allocation and trajectory design for UAV relaying systems. IEEE Trans. Commun. 68(10), 6483–6498 (2020)
Nouri, N., Abouei, J., Sepasian, A.R., Jaseemuddin, M., Anpalagan, A., Plataniotis, K.N.: Three-dimensional multi-UAV placement and resource allocation for energy-efficient IoT communication. IEEE Internet Things J. 9(3), 2134–2152 (2022)
Du, W., Wang, T., Zhang, H., Wu, D., Li, Y.: Resource allocation for the backhaul of NOMA-based cellular UAV network. IEEE Trans. Veh. Technol. 71(11), 11889–11899 (2022)
Chen, J., Cao, X., Yang, P., Xiao, M., Ren, S., Zhao, Z., Wu, D.O.: Deep reinforcement learning based resource allocation in multi-UAV-aided MEC networks. IEEE Trans. Commun. 71(1), 296–309 (2023)
Hosseini, M., Ghazizadeh, R.: Stackelberg game-based deployment design and radio resource allocation in coordinated UAVs-assisted vehicular communication networks. IEEE Trans. Veh. Technol. 72(1), 1196–1210 (2023)
Shao, X., Yang, C., Song, Y., Li, T., Han, Z.: Game theoretical approaches for cooperative UAV NOMA networks. IEEE Wirel. Commun. 28(2), 96–105 (2021)
Liu, C., Huang, L., Dong, Z.: A two-stage approach of joint route planning and resource allocation for multiple UAVs in unmanned logistics distribution. IEEE Access 10, 113888–113901 (2022)
Li, B., Liu, Y., Tan, L., Pan, H., Zhang, Y.: Digital twin assisted task offloading for aerial edge computing and networks. IEEE Trans. Veh. Technol. 71(10), 10863–10877 (2022)
Sun, C., Ni, W., Wang, X.: Joint computation offloading and trajectory planning for UAV-assisted edge computing. IEEE Trans. Wirel. Commun. 20(8), 5343–5358 (2021)
Li, T., Leng, S., Wang, Z., Zhang, K., Zhou, L.: Intelligent resource allocation schemes for UAV-swarm-based cooperative sensing. IEEE Internet Things J. 9(21), 21570–21582 (2022)
He, Y., Zhai, D., Huang, F., Wang, D., Tang, X., Zhang, R.: Joint task offloading, resource allocation, and security assurance for mobile edge computing-enabled UAV-assisted VANETS. Remote Sens. 13(8), 1547 (2021)
Zhang, P., Su, Y., Li, B., Liu, L., Wang, C., Zhang, W., Tan, L.: Deep reinforcement learning based computation offloading in UAV-assisted edge computing. Drones 7(3), 213 (2023)
Ranjha, A., Javed, M.A., Piran, M.J., Asif, M., Hussien, M., Zeadally, S., Frnda, J.: Towards facilitating power efficient URLLC systems in UAV networks under jittering. IEEE Trans. Consum. Electron. (2023). https://doi.org/10.1109/TCE.2023.3305550
Zhu, X., Zhai, L., Li, N., Li, Y., Yang, F.: Multi-objective deployment optimization of UAVs for energy-efficient wireless coverage. IEEE Trans. Commun. (2024). https://doi.org/10.1109/TCOMM.2024.3356795
Xiao, Z., Dong, H., Bai, L., Wu, D.O., Xia, X.-G.: Unmanned aerial vehicle base station (UAV-BS) deployment with millimeter-wave beamforming. IEEE Internet Things J. 7(2), 1336–1349 (2020)
Liu, J., Zhang, H., He, Y.: Deployment optimization of UAV-aided networks through a dynamic tunable model. IEEE Commun. Lett. 25(7), 2348–2352 (2021)
Fu, S., Feng, X., Sultana, A., Zhao, L.: Joint power allocation and 3D deployment for UAV-BSS: a game theory based deep reinforcement learning approach. IEEE Trans. Wirel. Commun. 23(1), 736–748 (2024)
Zhang, Q., Saad, W., Bennis, M., Lu, X., Debbah, M., Zuo, W.: Predictive deployment of UAV base stations in wireless networks: machine learning meets contract theory. IEEE Trans. Wirel. Commun. 20(1), 637–652 (2021)
Zhang, C., Zhang, L., Zhu, L., Zhang, T., Xiao, Z., Xia, X.-G.: 3D deployment of multiple UAV-mounted base stations for UAV communications. IEEE Trans. Commun. 69(4), 2473–2488 (2021)
Chen, J., Du, C., Zhang, Y., Han, P., Wei, W.: A clustering-based coverage path planning method for autonomous heterogeneous UAVs. IEEE Trans. Intell. Transp. Syst. 23(12), 25546–25556 (2022)
Qadir, Z., Zafar, M.H., Moosavi, S.K.R., Le, K.N., Mahmud, M.A.P.: Autonomous UAV path-planning optimization using metaheuristic approach for predisaster assessment. IEEE Internet Things J. 9(14), 12505–12514 (2022)
Yu, Z., Si, Z., Li, X., Wang, D., Song, H.: A novel hybrid particle swarm optimization algorithm for path planning of UAVs. IEEE Internet Things J. 9(22), 22547–22558 (2022)
Wang, X., Gursoy, M.C., Erpek, T., Sagduyu, Y.E.: Learning-based UAV path planning for data collection with integrated collision avoidance. IEEE Internet Things J. 9(17), 16663–16676 (2022)
Long, Y., Xu, G., Zhao, J., Xie, B., Fang, M.: Dynamic truck-UAV collaboration and integrated route planning for resilient urban emergency response. IEEE Trans. Eng. Manag. 71, 9826–9838 (2024)
Dong, X., Shi, C., Wen, W., Zhou, J.: Cooperative optimization of task allocation and trajectory planning for multimission in heterogeneous UAV cluster. In: Zhang, Z., Li, C. (eds.) Fifteenth International Conference on Signal Processing Systems (ICSPS 2023), vol. 13091, p. 130912V. International Society for Optics and Photonics, SPIE (2024)
Kumar, S., Suman, S., Swades, D.: Dynamic resource allocation in UAV-enabled mmWave communication networks. IEEE Internet Things J. 8(12), 9920–9933 (2020)
Zhang, P., Chen, N., Shen, S., Yu, S., Wu, S., Kumar, N.: Future quantum communications and networking: a review and vision. IEEE Wirel. Commun. (2022). https://doi.org/10.1109/MWC.012.2200295
Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L., Nee, A.Y.C.: Enabling technologies and tools for digital twin. J. Manuf. Syst. 58(B, SI), 3–21 (2021)
Funding
This work is partially supported by the Shandong Provincial Natural Science Foundation under Grant ZR2023LZH017, ZR2022LZH015, partially supported by the National Natural Science Foundation of China under Grant 62173345, partially supported by the Open Foundation of Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences) under Grant 2023ZD010.
Author information
Authors and Affiliations
Contributions
Yilin Li, Yanxian Bi and Zhiqiang Li wrote the main manuscript text. Jian Wang, Hongxia Zhang and Peiying Zhang provided resources and information. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have stated explicitly that there are no Conflict of interest in connection with this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, Y., Bi, Y., Wang, J. et al. Unmanned aerial vehicle assisted communication: applications, challenges, and future outlook. Cluster Comput 27, 13187–13202 (2024). https://doi.org/10.1007/s10586-024-04631-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-024-04631-z