Skip to main content
Log in

A stochastic bi-objective project scheduling model under failure of activities

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, the research and development project scheduling problem (RDPSP) under uncertain failure of activities is formulated where an activity’s failure results in the project’s overall failure. A scenario-based bi-objective model to maximize the expected net present value (eNPV) and to minimize the NPV’s risk by conditional value-at-risk (CVaR) measurement is presented. For this purpose, different modes of failure or success of activities have been considered as a stochastic parameter by a set of scenarios. To formulate the problem, a nonlinear model is first presented, then a mixed-integer programming (MIP) model of the problem is developed by piecewise approximation. Some valid inequalities are presented to improve the performance of the MIP model. A sequential sampling procedure is also used to approximate the solution of the MIP model with a large number of scenarios. The experimental results have shown that the sequential sampling procedure attains high-quality solutions in a reasonable CPU time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnetis, A., Benini, M., Detti, P., Hermans, B., & Pranzo, M. (2022a). Replication and sequencing of unreliable jobs on parallel machines. Computers and Operations Research, 139, 105634.

    Google Scholar 

  • Agnetis, A., Hermans, B., Leus, R., & Rostami, S. (2022b). Time-critical testing and search problems. European Journal of Operational Research, 296(2), 440–452.

    Google Scholar 

  • Alvarez-Valdés, R., & Tamarit, J. M. (1993). The project scheduling polyhedron: Dimension, facets and lifting theorems. European Journal of Operational Research, 67(2), 204–220.

    Google Scholar 

  • Atakan, S., Bülbül, K., & Noyan, N. (2017). Minimizing value-at-risk in single-machine scheduling. Annals of Operations Research, 248(1–2), 25–73.

    Google Scholar 

  • Bayraksan, G., & Morton, D. P. (2011). A sequential sampling procedure for stochastic programming. Operations Research, 59(4), 898–913.

    Google Scholar 

  • Caron, F., Fumagalli, M., & Rigamonti, A. (2007). Engineering and contracting projects: A value at risk based approach to portfolio balancing. International Journal of Project Management, 25(6), 569–578.

    Google Scholar 

  • Coolen, K., Wei, W., Nobibon, F. T., & Leus, R. (2014). Scheduling modular projects on a bottleneck resource. Journal of Scheduling, 17(1), 67–85.

    Google Scholar 

  • Creemers, S. (2018a). Maximizing the expected net present value of a project with phasetype distributed activity durations: An efficient globally optimal solution procedure. European Journal of Operational Research, 267, 16–22.

    Google Scholar 

  • Creemers, S. (2018b). Moments and distribution of the net present value of a serial project. European Journal of Operational Research, 267, 835–848.

    Google Scholar 

  • Creemers, S., De Reyck, B., & Leus, R. (2015). Project planning with alternative technologies in uncertain environments. European Journal of Operational Research, 242(2), 465–476.

    Google Scholar 

  • Creemers, S., Leus, R., & Lambrecht, M. (2010). Scheduling Markovian PERT networks to maximize the net present value. Operations Research Letters, 38(1), 51–56.

    Google Scholar 

  • De Reyck, B., & Leus, R. (2008). R&D project scheduling when activities may fail. IIE Transactions, 40(4), 367–384.

    Google Scholar 

  • Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns. The American Economic Review, 67(2), 116–126.

    Google Scholar 

  • Ghosh, B., & Sen, P. (Eds.). (1991). Handbook of sequential analysis. Marcel Dekker Inc.

    Google Scholar 

  • Ghosh, M., Mukhopadhyay, N., & Sen, P. K. (1997). Sequential estimation. Wiley.

    Google Scholar 

  • Hermans, B., & Leus, R. (2018). Scheduling Markovian PERT networks to maximize the net present value: New results. Operations Research Letters, 46(2), 240–244.

    Google Scholar 

  • Huang, X., Zhao, T., & Kudratova, S. (2016). Uncertain mean-variance and mean-semivariance models for optimal project selection and scheduling. Knowledge-Based Systems, 93, 1–11.

    Google Scholar 

  • Hwang, C. L., & Masud, A. S. M. (2012). Multiple objective decision making—methods and applications: A state-of-the-art survey (Vol. 164). Springer Science & Business Media.

    Google Scholar 

  • Jain, V., & Grossmann, I. E. (1999). Resource-constrained scheduling of tests in new product development. Industrial and Engineering Chemistry Research, 38(8), 3013–3026.

    Google Scholar 

  • Kasperski, A., & Zieliński, P. (2019). Risk-averse single machine scheduling: Complexity and approximation. Journal of Scheduling, 22(5), 567–580.

    Google Scholar 

  • Ke, H., & Liu, B. (2005). Project scheduling problem with stochastic activity duration times. Applied Mathematics and Computation, 168(1), 342–353.

    Google Scholar 

  • Keller, B., & Bayraksan, G. (2009). Scheduling jobs sharing multiple resources under uncertainty: A stochastic programming approach. Iie Transactions, 42(1), 16–30.

    Google Scholar 

  • Kılıç, M., Ulusoy, G., & Şerifoğlu, F. S. (2008). A bi-objective genetic algorithm approach to risk mitigation in project scheduling. International Journal of Production Economics, 112(1), 202–216.

    Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Markowitz, H. M. (1959). Portfolio selection, efficient diversification of investments. Wiley.

    Google Scholar 

  • Meloni, C., & Pranzo, M. (2020). Expected shortfall for the makespan in activity networks under imperfect information. Flexible Services and Manufacturing Journal, 32(3), 668–692.

    Google Scholar 

  • Miettinen, K. (1999). Nonlinear multiobjective optimization (Vol. 12). Springer Science & Business Media.

    Google Scholar 

  • Mohammadipour, F., & Sadjadi, S. J. (2016). Project cost–quality–risk tradeoff analysis in a time-constrained problem. Computers & Industrial Engineering, 95, 111–121.

    Google Scholar 

  • Ranjbar, M., & Davari, M. (2013). An exact method for scheduling of the alternative technologies in R&D projects. Computers and Operations Research, 40(1), 395–405.

    Google Scholar 

  • Rezaei, F., Najafi, A. A., & Ramezanian, R. (2020). Mean-conditional value at risk model for the stochastic project scheduling problem. Computers and Industrial Engineering, 142, 106356.

    Google Scholar 

  • Rezaei, F., Najafi, A. A., Ramezanian, R., & Demeulemeester, E. (2021). Simulation-based priority rules for the stochastic resource-constrained net present value and risk problem. Computers & Industrial Engineering, 160, 107607.

    Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–42.

    Google Scholar 

  • Rostami, S., Creemers, S., Wei, W., & Leus, R. (2019). Sequential testing of n-out-of-n systems: Precedence theorems and exact methods. European Journal of Operational Research, 274(3), 876–885.

    Google Scholar 

  • Sarin, S. C., Sherali, H. D., & Liao, L. (2014). Minimizing conditional-value-at-risk for stochastic scheduling problems. Journal of Scheduling, 17(1), 5–15.

    Google Scholar 

  • Schmidt, C. W., & Grossmann, I. E. (1996). Optimization models for the scheduling of testing tasks in new product development. Industrial and Engineering Chemistry Research, 35(10), 3498–3510.

    Google Scholar 

  • Shapiro, A. (2003). Monte Carlo sampling methods. Handbooks in Operations Research and Management Science, 10, 353–425.

    Google Scholar 

  • Sobel, M. J., Szmerekovsky, J. G., & Tilson, V. (2009). Scheduling projects with stochastic activity duration to maximize expected net present value. European Journal of Operational Research, 198, 697–705.

    Google Scholar 

  • Walȩdzik, K., & Mańdziuk, J. (2018). Applying hybrid Monte Carlo tree search methods to risk-aware project scheduling problem. Information Sciences, 460, 450–468.

    Google Scholar 

  • Wiesemann, W., Kuhn, D., & Rustem, B. (2010). Maximizing the net present value of a project under uncertainty. European Journal of Operational Research, 202(3), 56–367.

    Google Scholar 

  • Ye, S., & Tiong, R. L. (2000). NPV-at-risk method in infrastructure project investment evaluation. Journal of Construction Engineering and Management, 126(3), 227–233.

    Google Scholar 

  • Zafra-Cabeza, A., Ridao, M. A., & Camacho, E. F. (2004). An algorithm for optimal scheduling and risk assessment of projects. Control Engineering Practice, 12(10), 1329–1338.

    Google Scholar 

  • Zafra-Cabeza, A., Ridao, M. A., & Camacho, E. F. (2008). Using a risk-based approach to project scheduling: A case illustration from semiconductor manufacturing. European Journal of Operational Research, 190(3), 708–723.

    Google Scholar 

  • Zhao, C., Ke, H., & Chen, Z. (2016). Uncertain resource-constrained project scheduling problem with net present value criterion. Journal of Uncertainty Analysis and Applications, 4(1), 12.

    Google Scholar 

  • Zhao, W., Hall, N. G., & Liu, Z. (2020). Project evaluation and selection with task failures. Production and Operations Management, 29(2), 428–446.

    Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful to Prof. Roel Leus for his valuable comments and suggestions. This work was supported by the Ministry of Science, Research and Technology of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Abbas Najafi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Mixed integer programming model (Model M5)

Appendix: Mixed integer programming model (Model M5)

$$ Min\,\,\;CVaR = VaR + \frac{1}{{\left( {1 - \alpha } \right)}}\mathop \sum \limits_{s\epsilon S} \pi_{s} *\gamma_{s} $$
(56)
$$ Max\,\,\user2{ } eNPV = \pi^{*} *CF*\mathop \sum \limits_{v} e^{{a_{{\left( {n + 1} \right)v}} }} \lambda_{{\left( {n + 1} \right)v}} - \mathop \sum \limits_{s\epsilon S} \pi_{s} .\mathop \sum \limits_{i = 0}^{n + 1} c_{i} .\mathop \sum \limits_{v} e^{{a_{iv} }} *T\left( {s,i,v} \right) $$
(57)
$$ \gamma_{s} \ge \mathop \sum \limits_{i = 0}^{n + 1} c_{i} .\mathop \sum \limits_{v} e^{{a_{iv} }} *T\left( {s,i,v} \right) - {\text{VaR}}\;\;\;\;\forall \left( {s \in S\backslash s^{*} } \right) $$
(58)
$$ \gamma_{s} \ge - \pi^{*} *CF*\mathop \sum \limits_{v} e^{{a_{{\left( {n + 1} \right)v}} }} \lambda_{{\left( {n + 1} \right)v}} + \mathop \sum \limits_{i = 0}^{n + 1} c_{i} .\mathop \sum \limits_{v} e^{{a_{iv} }} *T\left( {s,i,v} \right) - {\text{VaR}}\;\;\;\;\forall \left( {s = s^{*} } \right) $$
(59)
$$ - rx_{i} = \mathop \sum \limits_{v} a_{iv} \lambda_{iv} \;\;\;\; \forall \left( {i \in N} \right) $$
(60)
$$ \mathop \sum \limits_{v} \lambda_{iv} = 1\;\;\;\; \forall \left( {i \in N} \right) $$
(61)
$$ T\left( {s,i,v} \right) \le \lambda_{iv} \;\;\;\;\forall \left( {i \in N; s \in S;{ }v \in V} \right) $$
(62)
$$ T\left( {s,i,v} \right) \le M*\Delta_{i}^{s} \;\;\;\;\forall \left( {i \in N; s \in S; v \in V} \right) $$
(63)
$$ T\left( {s,i,v} \right) \ge \lambda_{iv} - M*(1 - \Delta_{i}^{s} )\;\;\;\;\forall \left( {i \in N; s \in S; v \in V} \right) $$
(64)
$$ \mathop \sum \limits_{{\begin{array}{*{20}c} \scriptstyle{j = 0} \\ \scriptstyle{ j \ne i} \\ \end{array} }}^{n + 1} y_{ji} - 1 + \Delta_{i}^{s} \ge \mathop \sum \limits_{{\begin{array}{*{20}c} \scriptstyle{j = 0} \\ \scriptstyle{ j \ne i} \\ \end{array} }}^{n + 1} y_{ji} *W_{j}^{s} \;\;\;\;\forall \left( {i \in N; s \in S} \right) $$
(65)
$$ x_{0} = 0 $$
(66)
$$ x_{n + 1} \le \delta_{n + 1} $$
(67)
$$ x_{i} + d_{i} \le x_{j} + M\left( {1 - y_{ij} } \right)\;\;\;\; \forall \left( {i,j \in N, j \ne i} \right) $$
(68)
$$ y_{ij} = 1 \;\;\;\; \forall \left( {\left( {i,j} \right) \in A} \right) $$
(69)
$$ y_{ij} + y_{jk} \le y_{ik} + 1 \;\;\;\; \forall (i,j,k \in N,k > j > i) $$
(70)
$$ x_{i} \ge 0\;\;\;\; \forall \left( {i \in N} \right) $$
(71)
$$ \gamma_{s} \ge 0 \;\;\;\; \forall \left( {s \in S} \right) $$
(72)
$$ \lambda_{iv} \ge 0 \;\;\;\; \forall \left( {i \in N,\forall v \in V} \right) $$
(73)
$$ T\left( {s,i,v} \right) \ge 0\;\;\;\; \forall \left( {i \in N; s \in S; v \in V} \right) $$
(74)
$$ VaR\;\;\;\;{\text{Free}}\;{\text{variable}} $$
(75)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, F., Najafi, A.A., Demeulemeester, E. et al. A stochastic bi-objective project scheduling model under failure of activities. Ann Oper Res 338, 453–476 (2024). https://doi.org/10.1007/s10479-023-05600-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-023-05600-2

Keywords