Skip to main content
Log in

Fuzzy graphs: algebraic structure and syntactic recognition

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Directed fuzzy hypergraphs are introduced as a generalization of both crisp directed hypergraphs and directed fuzzy graphs. It is proved that the set of all directed fuzzy hypergraphs can be structured into a magmoid with operations graph composition and disjoint union. In this framework a notion of syntactic recognition inside magmoids is defined. The corresponding class is proved to be closed under boolean operations and inverse morphisms of magmoids. Moreover, the language of all strongly connected fuzzy graphs and the language that consists of all fuzzy graphs that have at least one directed path from the begin node to the end node through edges with membership grade 1 are recognizable. Additionally, a useful characterization of recognizability through left derivatives is also achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Arnold A, Dauchet M (1978) Théorie des magmoides. I. RAIRO Inform Théor 12:235–257

    MathSciNet  MATH  Google Scholar 

  • Arnold A, Dauchet M (1979) Théorie des magmoides. II. RAIRO Inform Théor 13:135–154

    MathSciNet  MATH  Google Scholar 

  • Blume C (2010) Recognizable graph languages for the verification of dynamic systems. In: LNCS 6372, pp 384–387

  • Blume C, Bruggink HJS, Friedrich M, König B (2012) Treewidth, pathwidth and cospan decompositions with applications to graph-accepting tree automata. J Vis Lang Comput. doi:10.1016/j.jvlc.2012.10.002

  • Bozapalidis S, Kalampakas A (2003) A finite complete set of equations generating graphs. Discret Math Theor Comput Sci LNCS 2731:118–128

    Article  MathSciNet  Google Scholar 

  • Bozapalidis S, Kalampakas A (2004) An axiomatization of graphs. Acta Inform 41:19–61

    Article  MathSciNet  MATH  Google Scholar 

  • Bozapalidis S, Kalampakas A (2005) Automata on patterns and graphs. In: Proceedings of the 1st international conference on algebraic informatics, pp 31–52. Aristotle University of Thessaloniki

  • Bozapalidis S, Bozapalidou OL (2006) On the recognizability of fuzzy languages. I. Fuzzy Sets Syst 157:2394–2402

    Article  MATH  Google Scholar 

  • Bozapalidis S, Kalampakas A (2006) Recognizability of graph and pattern languages. Acta Inform 42:553–581

    Article  MathSciNet  MATH  Google Scholar 

  • Bozapalidis S, Bozapalidou OL (2008) On the recognizability of fuzzy languages. II. Fuzzy Sets Syst 159:107–113

    Article  MATH  Google Scholar 

  • Bozapalidis S, Kalampakas A (2008) Graph automata. Theor Comput Sci 393:147–165

    Article  MathSciNet  MATH  Google Scholar 

  • Bozapalidis S, Bozapalidou OL (2010) Fuzzy tree language recognizability. Fuzzy Sets Syst 161:716–734

    Article  MATH  Google Scholar 

  • Bruggink HJS, König B (2010) A logic on subobjects and recognizability. IFIP-AICT 323:197–212

    Google Scholar 

  • Brzozowski J, Ye Y (2011) Syntactic complexity of ideal and closed languages. In: LNCS 6795, pp 117–128

  • Brzozowski J, Li B, Ye Y (2012) Syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages. Theor Comput Sci 449:37–53

    Article  MathSciNet  MATH  Google Scholar 

  • Courcelle B (1990) The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inform Comput 85:12–75

    Article  MathSciNet  MATH  Google Scholar 

  • Courcelle B, Weil P (2005) The recognizability of sets of graphs is a robust property. Theor Comput Sci 342:173–228

    Article  MathSciNet  MATH  Google Scholar 

  • Eilenberg S (1974) Automata, languages and machines, vol A. Academic Press, London

    MATH  Google Scholar 

  • Engelfriet J, Vereijken JJ (1997) Context-free graph grammars and concatenation of graphs. Acta Inform 34:773–803

    Article  MathSciNet  MATH  Google Scholar 

  • Ésik Z, Liu G (2007) Fuzzy tree automata. Fuzzy Sets Syst 158:1450–1460

    Article  MATH  Google Scholar 

  • Glykas M (ed) (2010) Fuzzy cognitive maps, advances in theory, methodologies, tools and applications. Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  • Gécseg F, Steinby M (1984) Tree automata. Akademiai Kiado, Budapest

    MATH  Google Scholar 

  • Kalampakas A (2007) The syntactic complexity of Eulerian graphs. In: Proceedings of the 2nd international conference on algebraic informatics. LNCS 4728, pp 208–217

  • Kalampakas A (2011) Graph automata: the algebraic properties of abelian relational graphoids. In: LNCS 7020, pp 168–182

  • Kuich W, Rahonis G (2006) Fuzzy regular languages over finite and infinite words. Fuzzy Sets Syst 157:1532–1549

    Article  MathSciNet  MATH  Google Scholar 

  • Konstandinidis S, Sântean N, Yu S (2007) Fuzzification of rational and recognizable sets. Fundam Inform 76:413–447

    Google Scholar 

  • Louskou-Bozapalidou O (2007) Non-deterministic recognizability of fuzzy languages. Appl Math Sci 1:821–826

    MathSciNet  MATH  Google Scholar 

  • Mordeson JN, Nair PS (2000) Fuzzy graphs and fuzzy hypergraphs. Physica-Verlag, Heidelberg

    Book  MATH  Google Scholar 

  • Mordeson JN, Malik D (2002) Fuzzy automata and languages: theory and applications. Chapman & Hall/CRC, London

    Book  Google Scholar 

  • Malik DS, Mordeson JN, Sen MK (1999) Minimization of fuzzy finite automata. Inf Sci 113:323–330

    Article  MathSciNet  MATH  Google Scholar 

  • Petković T (2005) Varietes of fuzzy languages. In: Proceedings of the 1st international conference on algebraic informatics, pp 197–205. Aristotle University of Thessaloniki

  • Quernheim D, Knight K (2012) Towards probabilistic acceptors and transducers for feature structures. In: Proceedings of the 6th workshop syntax, semantics and structure in statistical translation, pp 76–85. Association for, computational linguistics, 2012

  • Rosenfeld A (1975) Fuzzy graphs. In: Zadeh LA, Fu KS, Tanaka K, Shimura M (eds) Fuzzy sets and their applications to cognitive and decision processes. Academic Press, New York, pp 77–95

    Chapter  Google Scholar 

  • Rahonis G (2005) Infinite fuzzy computations. Fuzzy Sets Syst 153:275–288

    Article  MathSciNet  MATH  Google Scholar 

  • Rahonis G (2009) Fuzzy Languages. In: Handbook of weighted automata, monographs in theoretical computer science, pp 481–517

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Kalampakas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalampakas, A., Spartalis, S., Iliadis, L. et al. Fuzzy graphs: algebraic structure and syntactic recognition. Artif Intell Rev 42, 479–490 (2014). https://doi.org/10.1007/s10462-013-9412-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-013-9412-0

Keywords