Skip to main content
Log in

Segmentation, classification and interpretation of breast cancer medical images using human-in-the-loop machine learning

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper explores the application of Human-in-the-Loop (HITL) strategies in the training of machine learning models in the medical domain. In this case, a doctor-in-the-loop approach is proposed to leverage human expertise in dealing with large and complex data. Specifically, the paper deals with the use of Whole Slide Imaging (WSI) for the analysis and prediction of the genomic subtype of breast cancer. Three different tasks were developed: segmentation of histopathological images, classification of these images regarding the genomic subtype of the cancer, and finally, interpretation of the machine learning results. The involvement of a pathologist helped us to develop a better segmentation model trying to group areas to make it more useful for further diagnosis. Because the classification models underperformed due to the complexity of the problem and insufficient data for certain cancer types, we focus our efforts in using the feedback from the pathologist to enhance model interpretability through a HITL hyperparameter optimization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availibility

The dataset analyzed during the current study is available in the TCGA repository [23], URL: https://portal.gdc.cancer.gov/projects/TCGA-BRCA. The images analyzed during the current study is available in the TCIA repository [25], https://www.cancerimagingarchive.net/collection/tcga-brca/

References

  1. Siegel RL, Giaquinto AN, Jemal A (2024) Cancer statistics, 2024. CA: A Cancer J Clinic, 74(1):12–49 https://doi.org/10.3322/caac.21820https://acsjournals.onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21820

  2. Dizon DS, Kamal AH (2024) Cancer statistics 2024: All hands on deck. CA: Cancer J Clinic, 74(1), 8–9 https://doi.org/10.3322/caac.21824https://acsjournals.onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21824

  3. Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, Jemal A, Siegel RL (2022) Breast cancer statistics, 2022. CA: Canc J Clinici, 72(6), 524–541 https://doi.org/10.3322/caac.21754, https://acsjournals.onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21754

  4. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167. https://doi.org/10.1200/JCO.2008.18.1370. (PMID: 19204204)

    Article  Google Scholar 

  5. Pascual T, Martin M, Fernández-Martí­nez A, Paré L, Alba E, Rodrí­guez-Lescure A, Perrone G, Cortés J, Morales S, Lluch A, Urruticoechea A, González-Farré B, Galván P, Jares P, Rodriguez A, Chic N, Righi D, Cejalvo JM, Tonini G, Adamo B, Vidal M, Villagrasa P, Muñoz M, Prat A (2019) A pathology-based combined model to identify pam50 non-luminal intrinsic disease in hormone receptor-positive HER2-negative breast cancer. Front Oncol, https://doi.org/10.3389/fonc.2019.00303

  6. Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B (2009) Histopathological image analysis: a review. IEEE Rev Biomed Eng 2:147–171. https://doi.org/10.1109/RBME.2009.2034865

    Article  Google Scholar 

  7. Kaur A, Kaushal C, Sandhu JK, Damaševičius R, Thakur N (2024) Histopathological image diagnosis for breast cancer diagnosis based on deep mutual learning. Diagnostics. https://doi.org/10.3390/diagnostics14010095

    Article  Google Scholar 

  8. Krishnakumar B, Kousalya K (2023) Optimal trained deep learning model for breast cancer segmentation and classification. Inform Technol Control 52(4):915–934. https://doi.org/10.5755/j01.itc.52.4.34232

    Article  MATH  Google Scholar 

  9. Carriero A, Groenhoff L, Vologina E, Basile P, Albera M (2024) Deep learning in breast cancer imaging: state of the art and recent advancements. Diagnostics 14(8):848. https://doi.org/10.3390/diagnostics14080848

    Article  Google Scholar 

  10. Mosqueira-Rey E, Hernández-Pereira E, Alonso-Ríos D, Bobes-Bascarán J, Fernández-Leal A (2023) Human-in-the-loop machine learning: a state of the art. Artif Intell Rev. https://doi.org/10.1007/s10462-022-10246-w

    Article  Google Scholar 

  11. Boecking B, Neiswanger W, Xing E, Dubrawski A (2021) Interactive weak supervision: learning useful heuristics for data labeling. https://arxiv.org/abs/2012.06046

  12. Lison P, Hubin A, Barnes J, Touileb S (2020) Named entity recognition without labelled data: a weak supervision approach. https://arxiv.org/abs/2004.14723

  13. Mosqueira-Rey E, Hernández-Pereira E, Bobes-Bascarán J, Alonso-Ríos D, Pérez-Sánchez A, Fernández-Leal A, Moret-Bonillo V, Vidal-Ínsua Y, Vázquez-Rivera F (2024) Addressing the data bottleneck in medical deep learning models using a human-in-the-loop machine learning approach. Neural Comput Appl 36(5):2597–2616. https://doi.org/10.1007/s00521-023-09197-2

    Article  Google Scholar 

  14. Voorst R (2024) Challenges and limitations of human oversight in ethical ai implementation in healthcare: balancing digital literacy and professional strain. Mayo Clinic: Proceed Digital Health. https://doi.org/10.1016/j.mcpdig.2024.08.004

    Article  Google Scholar 

  15. Kosaraju S, Park J, Lee H, Yang JW, Kang M (2022) Deep learning-based framework for slide-based histopathological image analysis. Sci Rep 12(1):19075. https://doi.org/10.1038/s41598-022-23166-0

    Article  Google Scholar 

  16. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A (2019) Artificial intelligence in digital pathology – new tools for diagnosis and precision oncology. Nat Rev Clin Oncol 16(11):703–715. https://doi.org/10.1038/s41571-019-0252-y

    Article  Google Scholar 

  17. Su A, Lee H, Tan X, Suarez CJ, Andor N, Nguyen Q, Ji HP (2022) A deep learning model for molecular label transfer that enables cancer cell identification from histopathology images. NPJ Precis Oncol 6(1):14. https://doi.org/10.1038/s41698-022-00252-0

    Article  Google Scholar 

  18. Rosai J (2007) Why microscopy will remain a cornerstone of surgical pathology. Lab Invest 87(5):403–408. https://doi.org/10.1038/labinvest.3700551

    Article  Google Scholar 

  19. Laak J, Litjens G, Ciompi F (2021) Deep learning in histopathology: the path to the clinic. Nat Med 27(5):775–784. https://doi.org/10.1038/s41591-021-01343-4

    Article  MATH  Google Scholar 

  20. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A (2019) Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol 16(11):703–715. https://doi.org/10.1038/s41571-019-0252-y

    Article  Google Scholar 

  21. Schneider L, Laiouar-Pedari S, Kuntz S, Krieghoff-Henning E, Hekler A, Kather JN, Gaiser T, Fröhling S, Brinker TJ (2022) Integration of deep learning-based image analysis and genomic data in cancer pathology: a systematic review. Eur J Cancer 160:80–91. https://doi.org/10.1016/j.ejca.2021.10.007

    Article  Google Scholar 

  22. Schettini F, Brasó-Maristany F, Kuderer NM, Prat A (2022) A perspective on the development and lack of interchangeability of the breast cancer intrinsic subtypes. NPJ Breast Cancer 8(1):85. https://doi.org/10.1038/s41523-022-00451-9

    Article  Google Scholar 

  23. Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113–1120. https://doi.org/10.1038/ng.2764

    Article  Google Scholar 

  24. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imag 26(6):1045–1057. https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  25. Lingle W, Erickson BJ, Zuley ML, Jarosz R, Bonaccio E, Filippini J, Net JM, Levi L, Morris EA, Figler GG, Elnajjar P, Kirk S, Lee Y, Giger M, Gruszauskas N (2016) The Cancer Genome Atlas Breast Invasive Carcinoma Collection (TCGA-BRCA) (Version 3) [Data set]. The Canc Imag Arch. https://doi.org/10.7937/K9/TCIA.2016.AB2NAZRP

    Article  Google Scholar 

  26. Chollet F et al (2015) Keras. https://keras.io

  27. Anderson MR, Antenucci D, Cafarella MJ (2016) Runtime support for human-in-the-loop feature engineering system. IEEE Data Eng Bull 39(4):62–84

    MATH  Google Scholar 

  28. Gkorou D, Larranaga M, Ypma A, Hasibi F, Wijk RJ (2020) Get a human-in-the-loop: Feature engineering via interactive visualizations. In: Proceedings of the workshop on interactive adaptive learning co-located with european conference on machine learning and principles and practice of knowledge discovery in databases (ECML PKDD 2020), vol. 2660. CEUR Workshop Proceedings, ???. https://ceur-ws.org/Vol-2660/ialatecml_shortpaper4.pdf

  29. Bengio Y, Louradour J, Collobert R, Weston J (2009) Curriculum learning. In: Proceedings of the 26th Annual international conference on machine learning. ICML ’09, pp. 41–48. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/1553374.1553380. https://dl.acm.org/doi/10.1145/1553374.1553380

  30. Holmberg L, Davidsson P, Linde P (2020) A feature space focus in machine teaching. In: 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 1–2. https://doi.org/10.1109/PerComWorkshops48775.2020.9156175. http://mau.diva-portal.org/smash/get/diva2:1428195/FULLTEXT01.pdf

  31. Settles B (2009) Active learning literature survey. Technical report, University of Wisconsin-Madison. Department of Computer Sciences. https://minds.wisconsin.edu/handle/1793/60660

  32. Amershi S, Cakmak M, Knox WB, Kulesza T (2014) Power to the people: the role of humans in interactive machine learning. AI Mag 35(4):105–120. https://doi.org/10.1609/aimag.v35i4.2513

    Article  MATH  Google Scholar 

  33. Kaufmann T, Weng P, Bengs V, Hüllermeier E (2023) A survey of reinforcement learning from human feedback. https://arxiv.org/abs/2312.14925

  34. Simard PY, Amershi S, Chickering DM, Pelton AE, Ghorashi S, Meek C, Ramos G, Suh J, Verwey J, Wang M, Wernsing J (2017) Machine teaching: a new paradigm for building machine learning systems. http://arxiv.org/abs/1707.06742

  35. Ramos G, Meek C, Simard P, Suh J, Ghorashi S (2020) Interactive machine teaching: a human-centered approach to building machine-learned models. Human-Comput Interact 35(5–6):413–451. https://doi.org/10.1080/07370024.2020.1734931

    Article  Google Scholar 

  36. Mosqueira-Rey E, Fernández-Castaño S, Alonso-Rí­os D, Vázquez-Cano E, López-Meneses E (2023) Gamifying machine teaching: human-in-the-loop approach for diphthong and hiatus identification in spanish language. Procedia Comput Sci, 225:3086–3093 https://doi.org/10.1016/j.procs.2023.10.302

  37. Gunning D (2017) Explainable artificial intelligence (xAI). Technical report, Defense Advanced Research Projects Agency (DARPA). https://www.darpa.mil/program/explainable-artificial-intelligence

  38. Abdul A, Vermeulen J, Wang D, Lim BY, Kankanhalli M (2018) Trends and trajectories for explainable, accountable and intelligible systems: An hci research agenda. In: Proceedings of the 2018 CHI conference on human factors in computing systems. CHI ’18. Association for Computing Machinery, New York, NY, USA, pp. 1–18. https://doi.org/10.1145/3173574.3174156

  39. Guillot Suarez C (2022) Human-in-the-loop hyperparameter tuning of deep nets to improve explainability of classifications. Master’s thesis, Aalto University. School of Electrical Engineering. http://urn.fi/URN:NBN:fi:aalto-202205223354

  40. Xu W (2019) Toward human-centered AI: a perspective from human-computer interaction. Interactions 26(4):42–46. https://doi.org/10.1145/3328485

    Article  MATH  Google Scholar 

  41. Choung H, David P, Ross A (2023) Trust and ethics in AI. AI & Society 38(2):733–745. https://doi.org/10.1007/s00146-022-01473-4

    Article  MATH  Google Scholar 

  42. Barredo Arrieta A, Dí­az-Rodrí­guez N, Del Ser J, Bennetot A, Tabik S, Barbado A, Garcia S, Gil-Lopez S, Molina D, Benjamins R, Chatila R, Herrera F (2020) Explainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible AI. Inform Fus 58, 82–115 https://doi.org/10.1016/j.inffus.2019.12.012

  43. Freitas AA (2014) Comprehensible classification models: a position paper. SIGKDD Explor. Newsl. 15(1):1–10. https://doi.org/10.1145/2594473.2594475

    Article  MATH  Google Scholar 

  44. Ribeiro MT, Singh S, Guestrin C (2016) Model-agnostic interpretability of machine learning. arXiv:1606.05386

  45. Slack D, Hilgard A, Singh S, Lakkaraju H (2021) Reliable post hoc explanations: Modeling uncertainty in explainability. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Vaughan, J.W. (eds.) Advances in neural information processing systems, vol. 34, pp. 9391–9404. Curran Associates, Inc., ???. https://proceedings.neurips.cc/paper_files/paper/2021/file/4e246a381baf2ce038b3b0f82c7d6fb4-Paper.pdf

  46. Ho DJ, Yarlagadda DVK, D’Alfonso TM, Hanna MG, Grabenstetter A, Ntiamoah P, Brogi E, Tan LK, Fuchs TJ (2021) Deep multi-magnification networks for multi-class breast cancer image segmentation. Computeriz Med Imag Graph 88:101866. https://doi.org/10.1016/j.compmedimag.2021.101866

    Article  Google Scholar 

  47. YILMAZ V (2019) Elastic deformation on images. https://towardsdatascience.com/elastic-deformation-on-images-b00c21327372

  48. Hou L, Samaras D, Kurc TM, Gao Y, Davis JE, Saltz JH (2016) Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). https://openaccess.thecvf.com/content_cvpr_2016/html/Hou_Patch-Based_Convolutional_Neural_CVPR_2016_paper.html

  49. Mehta S, Mercan E, Bartlett J, Weaver D, Elmore J, Shapiro L (2018) Learning to segment breast biopsy whole slide images. In: 2018 IEEE Winter conference on applications of computer vision (WACV), pp. 663–672. https://doi.org/10.1109/WACV.2018.00078

  50. Agarwalla A, Shaban M, Rajpoot NM (2017) Representation-aggregation networks for segmentation of multi-gigapixel histology images. https://arxiv.org/abs/1707.08814

  51. Chollet F (2017) Xception: deep learning with depthwise separable convolutions. arXiv:1610.02357

  52. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv:1512.03385

  53. Liu T, Huang J, Liao T, Pu R, Liu S, Peng Y (2022) A hybrid deep learning model for predicting molecular subtypes of human breast cancer using multimodal data. IRBM 43(1):62–74. https://doi.org/10.1016/j.irbm.2020.12.002

    Article  MATH  Google Scholar 

  54. Villareal RJT, Abu PAR (2021) Patch-based convolutional neural networks for TCGA-BRCA breast cancer classification. In: Bebis G, Athitsos V, Yan T, Lau M, Li F, Shi C, Yuan X, Mousas C, Bruder G (Eds) Advances in visual computing, pp. 29–40. Springer, Cham. https://doi.org/10.1007/978-3-030-90436-4_3

  55. Choi JM, Chae H (2023) moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks. BMC Bioinform 24(1):169. https://doi.org/10.1186/s12859-023-05273-5

    Article  MATH  Google Scholar 

  56. Ribeiro MT, Singh S, Guestrin C (2016) “Why should I trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’16, pp. 1135–1144. Association for computing machinery, New York, NY, USA. https://doi.org/10.1145/2939672.2939778

  57. Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D (2018) A survey of methods for explaining black box models. ACM Comput Sur. https://doi.org/10.1145/3236009

    Article  MATH  Google Scholar 

  58. Zhang Y, Song K, Sun Y, Tan S, Udell M (2019) Why Should You Trust My Explanation? Understanding uncertainty in LIME explanations. https://arxiv.org/abs/1904.12991

  59. Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds.) Advances in neural information processing systems. Proceedings of the 31st Int. Conf. on neural information processing systems. NIPS’17, vol. 30, pp. 4768–4777. Curran Associates Inc., Red Hook, NY, USA. https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

  60. Watson DS, O’Hara J, Tax N, Mudd R, Guy I (2023) Explaining predictive uncertainty with information theoretic shapley values. arXiv:2306.05724

  61. Alvarez-Melis D, Jaakkola TS (2018) On the robustness of interpretability methods. arXiv:1806.08049

  62. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International conference on computer vision (ICCV), pp. 618–626. https://doi.org/10.1109/ICCV.2017.74

  63. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp. 2921–2929. IEEE Computer Society, Los Alamitos, CA, USA. https://doi.org/10.1109/CVPR.2016.319. https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.319

  64. Lin M, Chen Q, Yan S (2014) Network in network. https://arxiv.org/pdf/1312.4400v3.pdf

  65. Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN (2018) Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter conference on applications of computer vision (WACV), pp. 839–847. https://doi.org/10.1109/WACV.2018.00097

  66. Li S, Li T, Sun C, Yan R, Chen X (2023) Multilayer grad-cam: an effective tool towards explainable deep neural networks for intelligent fault diagnosis. J Manuf Syst 69:20–30. https://doi.org/10.1016/j.jmsy.2023.05.027

    Article  MATH  Google Scholar 

  67. Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. arXiv:1206.5533

  68. Feurer M, Hutter F (2019) Hyperparameter optimization. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated machine learning: methods, systems, challenges, pp. 3–33. Springer. https://doi.org/10.1007/978-3-030-05318-5_1

  69. Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: Proceedings of the 24th International conference on neural information processing systems. NIPS’11, pp. 2546–2554. Curran Associates Inc., Red Hook, NY, USA. https://dl.acm.org/doi/10.5555/2986459.2986743

  70. Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning, vol 4. Springer, New York, NY, USA

    MATH  Google Scholar 

  71. Chen Z, Mak S, Wu CFJ (2023) A hierarchical expected improvement method for Bayesian optimization. arXiv:1911.07285pdf

  72. Wu J, Chen X-Y, Zhang H, Xiong L-D, Lei H, Deng S-H (2019) Hyperparameter optimization for machine learning models based on bayesian optimizationb. J Electr Sci Technol 17(1), 26–40 https://doi.org/10.11989/JEST.1674-862X.80904120

  73. Nogueira F (2014) Bayesian optimization: open source constrained global optimization tool for Python. https://github.com/bayesian-optimization/BayesianOptimization

  74. Shahriari B, Swersky K, Wang Z, Adams RP, Freitas N (2016) Taking the human out of the loop: a review of Bayesian optimization. Proc IEEE 104(1):148–175. https://doi.org/10.1109/JPROC.2015.2494218

    Article  MATH  Google Scholar 

  75. Brochu E, Brochu T, Freitas N (2010) A bayesian interactive optimization approach to procedural animation design. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics symposium on computer animation. SCA ’10, pp. 103–112. Eurographics Association, Goslar, DEU. https://dl.acm.org/doi/abs/10.5555/1921427.1921443

  76. Kim M, Ding Y, Malcolm P, Speeckaert J, Siviy CJ, Walsh CJ, Kuindersma S (2017) Human-in-the-loop Bayesian optimization of wearable device parameters. Plos One. https://doi.org/10.1371/journal.pone.0184054

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the State Research Agency of the Spanish Government (Grants PID2019-107194GB-I00/AEI/10.13039/501100011033 and Project PID2023-147422OB-I00) and by the Xunta de Galicia (Grant ED431C 2022/44), supported by the EU European Regional Development Fund (ERDF). We wish to acknowledge support received from the Centro de Investigación de Galicia CITIC, funded by the Xunta de Galicia and ERDF (Grant ED431C 2022/44). Funding for open access charge: Universidade da Coruña/CISUG. The results published here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Funding

The funding received has been stated in the acknowledgments section.

Author information

Authors and Affiliations

Authors

Contributions

David Vázquez-Lema main programmer and developer, also writer, reviewer and editor. Eduardo Mosqueira-Rey main writer of the manuscript, also reviewer and editor. Elena Hernández-Pereira assistant writer in interpretation tasks, also reviewer and editor. Carlos Fernández-Lozano ML specialist in cancer diseases acting as advisor in all the tasks of the paper, also reviewer and editor. Fernando Seara-Romero software engineer in charge of implementing the interpretation task. Jorge Pombo-Otero pathologist in charge of all the tasks involving HITL machine learning.

Corresponding author

Correspondence to Eduardo Mosqueira-Rey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Lema, D., Mosqueira-Rey, E., Hernández-Pereira, E. et al. Segmentation, classification and interpretation of breast cancer medical images using human-in-the-loop machine learning. Neural Comput & Applic 37, 3023–3045 (2025). https://doi.org/10.1007/s00521-024-10799-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-024-10799-7

Keywords