Skip to main content
Log in

A composite neural network-based adaptive sliding mode control method for reluctance actuator maglev system

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

To achieve high levitation control performances for a maglev system (MLS) with the uncertainties caused by the inherent nonlinearities and external disturbances, this paper proposes a novel composite adaptive sliding mode control (CASMC) method. The CASMC method comprises an equivalent controller, a composite neural network (NN) compensator, and a composite adaptive switching controller. Firstly, a modified prediction error that adds an adaptive switching term is designed to enlarge the effect of the compensation error. Secondly, a composite weight updating law consisting of the modified prediction error and the sliding mode surface is used for NN to accelerate its convergence speed. Thirdly, a new composite adaptive switching control law, including a prediction error-based adaptive switching gain and a prediction error-based proportion switching gain, is proposed for better dynamic response, stronger disturbance suppression capability, and lower chattering. The stability of the closed-loop control system is analyzed by the Lyapunov theorem. Comparative experiments were performed. Results show that the CASMC method can guarantee high levitation control performances with a better dynamic response, stronger robustness, no overshoot, and lower chattering simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

ASMC:

Adaptive sliding mode control

CASMC:

Composite adaptive sliding mode control

CSMC:

Composite sliding mode control

Fig:

Figure

GUUB:

Globally uniformly ultimately bounded

NN:

Neural network

NN-ASMC:

Neural network-based adaptive sliding mode control

MLS:

Maglev system

MAE:

Maximal error

PID:

Proportional–integral–differential

RMSE:

Root mean square error

RBF:

Radial basis function

SMC:

Sliding mode control

ST:

Settling time

References

  1. Zhou H, Deng H, Duan J (2017) Hybrid fuzzy decoupling control for a precision maglev motion system. IEEE/ASME Trans Mechatron 23(1):389–401

    Article  Google Scholar 

  2. Ramirez-Laboreo E, Roes MGL, Sagues C (2019) Hybrid dynamical model for reluctance actuators including saturation, hysteresis, and eddy currents. IEEE/ASME Trans Mechatron 24(3):1396–1406

    Article  Google Scholar 

  3. Sun Y, Qiang H, Mei X, Teng Y (2018) Modified repetitive learning control with unidirectional control input for uncertain nonlinear systems. Neural Comput Appl 30:2003–2012

    Article  Google Scholar 

  4. Noshadi A, Shi J, Lee WS, Shi P, Kalam A (2016) Optimal pid-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system. Neural Comput Appl 27(7):2031–2046

    Article  Google Scholar 

  5. de Jesús Rubio J, Lughofer E, Pieper J, Cruz P, Martinez DI, Ochoa G, Islas MA, Garcia E (2021) Adapting h-infinity controller for the desired reference tracking of the sphere position in the maglev process. Inf Sci 569:669–686

    Article  MathSciNet  Google Scholar 

  6. Qin Y, Peng H, Zhou F, Zeng X, Wu J (2015) Nonlinear modeling and control approach to magnetic levitation ball system using functional weight RBF network-based state-dependent arx model. J Franklin Inst 352(10):4309–4338

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun Y, Xu J, Lin G, Sun N (2021) Adaptive neural network control for maglev vehicle systems with time-varying mass and external disturbance. Neural Comput Appl 146:1–12

    Google Scholar 

  8. Sadek U, Sarjaš A, Chowdhury A, Svečko R (2017) Improved adaptive fuzzy backstepping control of a magnetic levitation system based on symbiotic organism search. Appl Soft Comput 56:19–33

    Article  Google Scholar 

  9. Roy P, Roy BK (2020) Sliding mode control versus fractional-order sliding mode control: applied to a magnetic levitation system. J Control Autom Electr Syst 31(3):597–606

    Article  Google Scholar 

  10. Yu W, Francisco PC, Li X (2011) Two-stage neural sliding-mode control of magnetic levitation in minimal invasive surgery. Neural Comput Appl 20(8):1141–1147

    Article  Google Scholar 

  11. Pang H, Liu M, Hu C, Zhang F (2022) Adaptive sliding mode attitude control of two-wheel mobile robot with an integrated learning-based RBFNN approach. Neural Comput Appl 34(17):14959–14969

    Article  Google Scholar 

  12. Zhang J, Wang H, Cao Z, Zheng J, Yu M, Yazdani A, Shahnia F (2020) Fast nonsingular terminal sliding mode control for permanent-magnet linear motor via elm. Neural Comput Appl 32(18):14447–14457

    Article  Google Scholar 

  13. Sun H, Hou L, Li C (2019) Synchronization of single-degree-of-freedom oscillators via neural network based on fixed-time terminal sliding mode control scheme. Neural Comput Appl 31(10):6365–6372

    Article  Google Scholar 

  14. Pandey S, Dourla V, Dwivedi P, Junghare A (2019) Introduction and realization of four fractional-order sliding mode controllers for nonlinear open-loop unstable system: A magnetic levitation study case. Nonlinear Dyn 98(1):601–621

    Article  Google Scholar 

  15. Lee J-D, Khoo S, Wang Z-B (2013) DSP-based sliding-mode control for electromagnetic-levitation precise-position system. IEEE Trans Ind Inf 9(2):817–827. https://doi.org/10.1109/TII.2012.2219062

    Article  Google Scholar 

  16. Alipour H, Sharifian MBB, Afsharirad H (2012) A PID sliding mode control for ropeless elevator maglev guiding system. Energy Power Eng 4(3):158–164

    Article  Google Scholar 

  17. González JA, Barreiro A, Dormido S, Banos A (2017) Nonlinear adaptive sliding mode control with fast non-overshooting responses and chattering avoidance. J Franklin Inst 354(7):2788–2815

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang K, Liu X, Jing Y (2022) Super twisting sliding mode network congestion control based on disturbance observer. Neural Comput Appl 34(12):9689–9699

    Article  Google Scholar 

  19. Wang S, Tao L, Chen Q, Na J, Ren X (2020) Usde-based sliding mode control for servo mechanisms with unknown system dynamics. IEEE/ASME Trans Mechatron 25(2):1056–1066. https://doi.org/10.1109/TMECH.2020.2971541

    Article  Google Scholar 

  20. Yang L, Yue M, Liu Y, Guo L (2020) Rbfnn based terminal sliding mode adaptive control for electric ground vehicles after tire blowout on expressway. Appl Soft Comput 92:106304

    Article  Google Scholar 

  21. Yao X, Wang X, Zhang L, Jiang X (2020) Model predictive and adaptive neural sliding mode control for three-dimensional path following of autonomous underwater vehicle with input saturation. Neural Comput Appl 32(22):16875–16889

    Article  Google Scholar 

  22. Wang Y, Zhang X, Li Z, Chen X, Su C-Y (2022) Adaptive implicit inverse control for a class of butterfly-like hysteretic nonlinear systems and its application to dielectric elastomer actuators. IEEE Trans Ind Electron 70(1):731–740

    Article  Google Scholar 

  23. Sun Y, Xu J, Qiang H, Lin G (2019) Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification. IEEE Trans Ind Electron 66(11):8589–8599

    Article  Google Scholar 

  24. Zad HS, Khan TI, Lazoglu I (2017) Design and adaptive sliding-mode control of hybrid magnetic bearings. IEEE Trans Ind Electron 65(3):2537–2547

    Google Scholar 

  25. Yao X, Chen Z (2019) Sliding mode control with deep learning method for rotor trajectory control of active magnetic bearing system. Trans Inst Meas Control 41(5):1383–1394

    Article  Google Scholar 

  26. Cui G, Cai B, Su B, Chu X (2021) Radial basis function neural network-based adaptive sliding mode suspension control for maglev yaw system of wind turbines. Proc Inst Mech Eng Part I: J Syst Control Eng 236(1):66–75

    Google Scholar 

  27. Roy S, Baldi S, Fridman LM (2020) On adaptive sliding mode control without a priori bounded uncertainty. Automatica 111:108650

    Article  MathSciNet  MATH  Google Scholar 

  28. Roy S, Roy SB, Lee J, Baldi S (2019) Overcoming the underestimation and overestimation problems in adaptive sliding mode control. IEEE/ASME Trans Mechatron 24(5):2031–2039

    Article  Google Scholar 

  29. Su X, Xu Y, Yang X (2022) Neural network adaptive sliding mode control without overestimation for a Maglev system. Mech Syst Signal Process 168:108661

    Article  Google Scholar 

  30. Liu C, Wen G, Zhao Z, Sedaghati R (2020) Neural-network-based sliding-mode control of an uncertain robot using dynamic model approximated switching gain. IEEE Trans Cybern 51(5):2339–2346

    Article  Google Scholar 

  31. Li Y, Yin Y, Zhang S, Dong J, Johansson R (2020) Composite adaptive control for bilateral teleoperation systems without persistency of excitation. J Franklin Inst 357(2):773–795

    Article  MathSciNet  MATH  Google Scholar 

  32. Han Z, Li S, Liu H (2020) Composite learning sliding mode synchronization of chaotic fractional-order neural networks. J Adv Res 25:87–96

    Article  Google Scholar 

  33. Xu B, Zhang R, Li S, He W, Shi Z (2020) Composite neural learning-based nonsingular terminal sliding mode control of mems gyroscopes. IEEE Trans Neural Netw Learn Syst 31(4):1375–1386. https://doi.org/10.1109/TNNLS.2019.2919931

    Article  MathSciNet  Google Scholar 

  34. Guo K, Pan Y, Zheng D, Yu H (2020) Composite learning control of robotic systems: a least squares modulated approach. Automatica 111:1–13

    Article  MathSciNet  MATH  Google Scholar 

  35. Guo Y, Qin H, Xu B, Han Y, Fan Q-Y, Zhang P (2019) Composite learning adaptive sliding mode control for AUV target tracking. Neurocomputing 351:180–186

    Article  Google Scholar 

  36. Guo K, Pan Y, Yu H (2018) Composite learning robot control with friction compensation: a neural network-based approach. IEEE Trans Ind Electron 66(10):7841–7851

    Article  Google Scholar 

  37. Wu Z, Zheng S, Zhao Y, Liu B, Ni J (2021) Fixed-time composite neural learning control of state-constrained nonlinear uncertain systems. J Franklin Inst 358(16):8138–8168

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu H, Pan Y, Cao J (2020) Composite learning adaptive dynamic surface control of fractional-order nonlinear systems. IEEE Trans Cybern 50(6):2557–2567. https://doi.org/10.1109/TCYB.2019.2938754

    Article  Google Scholar 

  39. Sun T, Peng L, Cheng L, Hou Z-G, Pan Y (2020) Composite learning enhanced robot impedance control. IEEE Trans Neural Netw Learn Syst 31(3):1052–1059. https://doi.org/10.1109/TNNLS.2019.2912212

    Article  MathSciNet  Google Scholar 

  40. Xu Y, Ding C, Su X, Li Z, Yang X (2022) Predictive-adaptive sliding mode control method for reluctance actuator maglev system. Nonlinear Dyn 111:4343–4356

    Article  Google Scholar 

  41. Wang J, Zhao L, Yu L (2020) Adaptive terminal sliding mode control for magnetic levitation systems with enhanced disturbance compensation. IEEE Trans Ind Electron 68(1):756–766

    Article  MathSciNet  Google Scholar 

  42. Zhang R, Shao T, Zhao W, Li A, Xu B (2018) Sliding mode control of mems gyroscopes using composite learning. Neurocomputing 275:2555–2564

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (No.52205053) and China Postdoctoral Science Foundation (No.2021TQ0070,2022M720766).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xiaofeng.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunlang, X., Feng, S., Xinyi, S. et al. A composite neural network-based adaptive sliding mode control method for reluctance actuator maglev system. Neural Comput & Applic 35, 15877–15890 (2023). https://doi.org/10.1007/s00521-023-08551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08551-8

Keywords