Abstract
Many real-world problems may be expressed as nonlinear constrained optimization problems (CNOP). For this kind of problems, the set of constraints specifies the feasible solution space. In the last decades, several algorithms have been proposed and developed for tackling CNOP. In this paper, we present an extension of the “Musical Composition Method” (MMC) for solving constrained optimization problems. MMC was proposed by Mora et al. (Artif Intell Rev 1–15, doi:10.1007/s10462-011-9309-8, 2012a). The MMC is based on a social creativity system used to compose music. We evaluated and analyzed the performance of MMC on 12 CNOP benchmark cases. The experimental results demonstrate that MMC significantly improves the global performances of the other tested metaheuristics on some benchmark functions.













Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abbasian R, Mouhoub M, Jula A (2011) Solving graph coloring problems using cultural algorithms. In: Twenty-fourth international FLAIRS conference
Berg S (2007) Alfred’s essentials of Jazz theory: a complete self-study course for all musicians. Alfred Publishing Company, Incorporated, Van Nuys, p 120
Cai Z, Wang Y (2006) A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Trans Evol Comput 10:658–675
Center for Advanced Research on Language Acquisition (CARLA) (2011) U. M. What is Culture? http://www.carla.umn.edu/culture/definitions.html
Christakis N, Fowler J (2009) Conntected the surprising power of our social networks and how they shape our lives. Little, Brown and Company/Hachette Book Group, New York, p 368. ISBN-10: 0316036137
Chung CJ, Reynolds RG (1996) A testbed for solving optimization problems using cultural algorithms. In: Evolutionary programming, pp 225–236
Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287
Coello Coello AC, Becerra RL (2002) Constrained optimization using an evolutionary programming-based cultural algorithm. In: Adaptive computing in design and manufacture V. Springer, London, pp 317–328
Coello Coello CA, Landa Becerra R (2003) Evolutionary multiobjective optimization using a cultural algorithm. In: Swarm Intelligence Symposium, 2003. SIS-03. Proceedings of the 2003 IEEE
Cruz Cortés N (2004) Sistema inmune artificial para solucionar problemas de optimización. Ph.D. thesis, CINVESTAV. Instituto Politecnico Nacional
da Silva E, Barbosa H, Lemonge A (2011) An adaptive constraint handling technique for differential evolution with dynamic use of variants in engineering optimization. Optim Eng 12:31–54. doi:10.1007/s11081-010-9114-2
Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern 26:29–41
Geertz C (1989). A Interpretação das Culturas. Rio de Janeiro: Ed. Guanabara, p 213
Gessler N (2003) Evolving cultural things-that-think. In: Computational synthesis: from basic building blocks to high level functionality. Papers from the 2003 AAAI spring symposium, Technical Report SS-03-02. Menlo Park, AAAI Press, San Francisco, pp 75–81
Gershenson C (2010) Computing networks: a general framework to contrast neurl and swarm cognitions. Paladyn J Behav Robot 1(2):147–153
Hu X, Eberhart R (2002) Solving constrained nonlinear optimization problems with particle swarm optimization. In: 6th World multiconference on systemics, cybernetics and informatics (SCI 2002), pp 203–206
Jin X, Reynolds RG (1999) Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: a cultural algorithm approach. In: Proceedings of the 1999 congress on evolutionary computation, 1999. CEC 99, Washington, DC, USA
Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: International conference neuronal networks, pp 1942–1948
Koziel S, Michalewicz Z (1999) Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol Comput 7(1):19–44
Landa Becerra R, Coello Coello CA (2005) Optimization with constraints using a cultured differential evolution approach. In: Proceedings of the GECCO conference
Lederach JP (1995) Preparing for peace: conflict transformation across cultures. Syracuse University Press, Syracuse
Lemonge ACC, Barbosa HJC (2004) An adaptive penalty scheme for genetic algorithms in structural optimization. Int J Numer Methods Eng 59(5):703–736
Mezura Montes E, Coello Coello CA (2003) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9:1–17
Michalewicz Z (1995) Genetic algorithms, numerical optimization, and constraints. In: Proceedings of the 6th international conference on genetic algorithms, pp 151–158
Michalewicz Z, Deb K, Schmidtz M, Stidsenx T (2000) Test-case generator for nonlinear continuous parameter optimization techniques. IEEE Trans Evol Comput 2000(4):197–215
Michalewicz Z, Fogel DB (1998) How to solve it: modern heuristics. Springer, Berlin
Michalewicz Z and Fogel DB (1998) How to solve it: modern heuristics. 2nd edn. Springer, Berlin, p 580. ISBN-10: 3540224947
Michalewicz Z, Janikow CZ (1996) Genocop: a genetic algorithm for numerical optimization problems with linear constraints. In: Communications of the ACM—electronic supplement to the December 39: article no. 175
Mora-Gutiérrez R, Ramírez-Rodríguez J, Rincón-García E (2012a) An optimization algorithm inspired by musical composition. Artif Intell Rev 1:15. doi:10.1007/s10462-011-9309-8
Mora-Gutiérrez R, Ramírez-Rodríguez J, Rincón-García EA, Ponsich A, Herrera O (2012b) An optimization algorithm inspired by social creativity systems. Computing 887–914. doi:10.1007/s00607-012-0205-0
Mora-Gutiérrez R (2013) Diseño y desarrollo de un método heurístico basado en un sistema socio-cultural de creatividad para la resolucin de problemas de optimización continuos no lineales y diseño de zonas electorales. Ph.D. Thesis. UNAM
Rasskin-Gutman D (2005) Modularity: jumping forms inside morphospace. In: Callebaut W, Rasskin-Gutman D (eds) Modularity: understanding the development and evolution of complex natural systems. MIT Press. pp 207–222
Ray T, Liew KM (2003) Society and civilitation: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7:386–396
Ray T, Kang T, Chye SK (2000) An evolutionary algorithm for constrained optimization. In: GECCO’00, pp 771–777
Reynolds RG (1994) An introduction to cultural algorithms. In: Proceedings of the 3rd annual conference on evolutionary programming. World Scientific Publishing, Singapore, pp 131–139
Reynolds RG, Peng B, Whallon R (2005) Emergent social structures in cultural algorithms. In: Proceedings of NAACSOS, Notre Dame, Indiana, USA
Reynolds R, Michalewicz Z, Cavaretta M (1995) Using cultural algorithms for constraint handling in GENOCOP. In: Evolutionary programming, vol. 4, pp 298–305. Complex adaptive systems. MIT Press, Cambridge
Simon HA (1996) The sciences of the artificial, 3rd edn. MIT Press, Cambridge
Schlosser G, Wagner GP (2004) Modularity in development and evolution. 1st edn. University of Chicago Press, p 600. ISBN-10: 0226738558
Tang W, Li Y (2008) Constrained optimization using triple spaces cultured genetic algorithm. In: International conference on natural computation, vol 6. pp 589–593
Wolpert DH, Macready WG (1995) No free lunch theorems for search. Technical Report SFI-WP-95-02-010, Santa Fe Institute
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by D. Liu.
Appendix: G-suite test functions
Appendix: G-suite test functions
Rights and permissions
About this article
Cite this article
Mora-Gutiérrez, R.A., Ramírez-Rodríguez, J., Rincón-García, E.A. et al. Adaptation of the musical composition method for solving constrained optimization problems. Soft Comput 18, 1931–1948 (2014). https://doi.org/10.1007/s00500-013-1177-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-013-1177-5